1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
dexar [7]
3 years ago
12

The outer surface of a spacecraft in space has an emissivity of 0.6 and an absorptivity of 0.2 for solar radiation. If solar rad

iation is incident on the spacecraft at a rate of 1200 W/m2, determine the surface temperature of the spacecraft when the radiation emitted equals the solar energy absorbed. The surface temperature of the spacecraft when the radiation emitted equals the solar energy absorbed is K.
Engineering
1 answer:
kondaur [170]3 years ago
8 0

Answer:

T surface = 3.9°C

Explanation:

given data

emissivity  0.6

absorptivity = 0.2

solar radiation is incident rate =  1200 W/m²

solution

we get here surface temperature by equality of emitted and absorbed heat rate that is

Q (absorbed) = Q (heat )  .................1

α Qinc = \epsilon * \sigma *A*T^4(surface)  

T surface = \sqrt[4]{\frac{\alpha Qinc}{\epsilon *\sigma * A} }       ..........................2

put here value and we get

T surface = \sqrt[4]{\frac{0.2*1000}{0.6*5.67**10^{-8}} }  

T surface = 276.9 K

T surface = 3.9°C

You might be interested in
Explain why change is inevitable in complex systems and give examples (apart from prototyping and incremental delivery) of softw
Over [174]

Explanation:

The change in complex systems can be explained according to the relationship of the environment where the system is implemented.

The system environment is dynamic, which consequently leads to adaptation to the system, which generates new requirements inherent to changes in business objectives and policies. Therefore, changing systems is necessary for tuning and usefulness so that the system correctly supports business requirements.

An example is the registration of the justification of the requirements, which is a process activity that supports changes in the system so that the reason for including a requirement is understood, which helps in future changes.

8 0
3 years ago
Which is the required type of fire extinguisher for standard naval vessels
Bess [88]

Answer:

Mentioned below are the required types of fire extinguishers for standard naval vessels:

  1. Soda Acid Fire Extinguisher
  2. Water Extinguisher
  3. Foam Extinguisher – Chemical and Mechanical
  4. Carbon Dioxide Extinguisher
  5. Dry Powder Extinguisher

Explanation:

A fire extinguisher is a functioning fire insurance gadget used to douse or control little fires, regularly in crisis circumstances. It isn't planned for use on a wild fire, for example, one which has arrived at the roof, jeopardizes the client (i.e., no way out course, smoke, blast danger, and so on.), or in any case requires the mastery of a fire unit. Ordinarily, a fire extinguisher comprises of a hand-held barrel shaped weight vessel containing an operator that can be released to stifle a fire. Fire extinguishers made with non-round and hollow weight vessels likewise exist however are less normal.

A naval vessel is a military boat (or in some cases pontoon, contingent upon arrangement) utilized by a naval force. Naval boats are separated from non military personnel delivers by development and reason. By and large, naval boats are harm versatile and furnished with weapon frameworks, however combat hardware on troop transports is light or non-existent. Naval vessel is planned fundamentally for naval fighting are named warships, rather than help (assistant boats) or shipyard activities.

3 0
3 years ago
Three single-phase, 10 kVA, 2400/280 V, 60-Hz transformers are connected to form a three-phase, 2400/480 V transformer The equiv
Dominik [7]
The answer to this question is letter A
7 0
4 years ago
A closed, rigid tank is filled with a gas modeled as an ideal gas, initially at 27°C and gauge pressure of 300 kPa. The gas is h
Sergio [31]

Answer:

the final temperature is 77.1 °C

Explanation:

Given the data in the question;

Initial temperature; T₁ = 27°C = ( 27 + 273)K = 300 K

Initial absolute pressure P₁ = 300 kPa = ( 300 + 101.325 )kPa = 401.325 kPa

Final absolute pressure P₂ = 367 kPa = ( 367 + 101.325 )kPa = 468.325 kPa

Now, to calculate the final temperature, we use the ideal gas equation;

P₁V/T₁ = P₂V/T₂

but it is mentioned that the rigid tank is closed,

so the volume is the same both before and after.

Change in volume = 0

hence;

P₁/T₁ = P₂/T₂

we substitute

401.325 kPa / 300 K = 468.325 kPa / T₂

T₂ × 401.325 kPa  = 300 K × 468.325 kPa

T₂ = [ 300 K × 468.325 kPa ] / 401.325 kPa

T₂ = 140497.5 K / 401.325

T₂ =  350.08 K

T₂ = ( 350.08 - 273 ) °C

T₂ = 77.1 °C

Therefore, the final temperature is 77.1 °C

3 0
3 years ago
In this assignment, you will write a user interface for your calculator using JavaFX. Your graphical user interface (GUI) should
Zolol [24]

Answer:

Kindly note that, you're to replace "at" with shift 2 as the brainly text editor can't take the symbol

Explanation:

import javafx.application.Application;

import javafx.stage.Stage;

import javafx.scene.Group;

import javafx.scene.Scene;

import javafx.scene.layout.VBox;

import javafx.scene.layout.HBox;

import javafx.scene.control.TextField;

import javafx.scene.control.Button;

public class Calculator extends Application {

public static void main(String[] args) {

// TODO Auto-generated method stub

launch(args);

}

"at"Override

public void start(Stage primaryStage) throws Exception {

// TODO Auto-generated method stub

Group root = new Group();

VBox mainBox = new VBox();

HBox inpBox = new HBox();

TextField txtInput = new TextField ();

txtInput.setEditable(false);

txtInput.setStyle("-fx-font: 20 mono-spaced;");

txtInput.setText("0.0");

txtInput.setMinHeight(20);

txtInput.setMinWidth(200);

inpBox.getChildren().add(txtInput);

Scene scene = new Scene(root, 200, 294);

mainBox.getChildren().add(inpBox);

HBox rowOne = new HBox();

Button btn7 = new Button("7");

btn7.setMinWidth(50);

btn7.setMinHeight(50);

Button btn8 = new Button("8");

btn8.setMinWidth(50);

btn8.setMinHeight(50);

Button btn9 = new Button("9");

btn9.setMinWidth(50);

btn9.setMinHeight(50);

Button btnDiv = new Button("/");

btnDiv.setMinWidth(50);

btnDiv.setMinHeight(50);

rowOne.getChildren().addAll(btn7,btn8,btn9,btnDiv);

mainBox.getChildren().add(rowOne);

HBox rowTwo = new HBox();

Button btn4 = new Button("4");

btn4.setMinWidth(50);

btn4.setMinHeight(50);

Button btn5 = new Button("5");

btn5.setMinWidth(50);

btn5.setMinHeight(50);

Button btn6 = new Button("6");

btn6.setMinWidth(50);

btn6.setMinHeight(50);

Button btnMul = new Button("*");

btnMul.setMinWidth(50);

btnMul.setMinHeight(50);

rowTwo.getChildren().addAll(btn4,btn5,btn6,btnMul);

mainBox.getChildren().add(rowTwo);

HBox rowThree = new HBox();

Button btn1 = new Button("1");

btn1.setMinWidth(50);

btn1.setMinHeight(50);

Button btn2 = new Button("2");

btn2.setMinWidth(50);

btn2.setMinHeight(50);

Button btn3 = new Button("3");

btn3.setMinWidth(50);

btn3.setMinHeight(50);

Button btnSub = new Button("-");

btnSub.setMinWidth(50);

btnSub.setMinHeight(50);

rowThree.getChildren().addAll(btn1,btn2,btn3,btnSub);

mainBox.getChildren().add(rowThree);

HBox rowFour = new HBox();

Button btnC = new Button("C");

btnC.setMinWidth(50);

btnC.setMinHeight(50);

Button btn0 = new Button("0");

btn0.setMinWidth(50);

btn0.setMinHeight(50);

Button btnDot = new Button(".");

btnDot.setMinWidth(50);

btnDot.setMinHeight(50);

Button btnAdd = new Button("+");

btnAdd.setMinWidth(50);

btnAdd.setMinHeight(50);

rowFour.getChildren().addAll(btnC,btn0,btnDot,btnAdd);

mainBox.getChildren().add(rowFour);

HBox rowFive = new HBox();

Button btnEq = new Button("=");

btnEq.setMinWidth(200);

btnEq.setMinHeight(50);

rowFive.getChildren().add(btnEq);

mainBox.getChildren().add(rowFive);

root.getChildren().add(mainBox);

primaryStage.setScene(scene);

primaryStage.setTitle("GUI Calculator");

primaryStage.show();

}

}

4 0
3 years ago
Other questions:
  • Whenever you are around construction sites, you should A speed up so you get through it quicker and avoid falling rocks B maneuv
    10·1 answer
  • The Fibonacci sequence 1, 1, 2, 3, 5, 8, 13, 21…… starts with two 1s, and each term afterward is the sum of its two predecessors
    8·2 answers
  • Estudio de caso Teorema de Bayes. Las historias de casos clínicos indican que diversas enfermedades producen sistemas similares.
    14·1 answer
  • Researchers compared protein intake among three groups of postmenopausal women: (1) women eating a standard American diet (STD),
    14·1 answer
  • Burn in hell i watched your stupid video and i still could not get the answer
    14·1 answer
  • At a construction site, there are constant arguments and conflicts amongst workers of different contractors and sub-contractors.
    14·1 answer
  • Calculate the number of vacancies per cubic meter for some metal, M, at 749°C. The energy for vacancy formation is 0.86 eV/atom,
    5·1 answer
  • Which type of load generates a magnetic field?
    12·1 answer
  • Which is an alloy made up of iron and carbon and has high compressive and tensile strength?
    6·1 answer
  • What is resonance as in ultrasound waves formation using magnetostriction method​
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!