Answer:
a) V = 0.354
b) G = 25.34 GPA
Explanation:
Solution:
We first determine Modulus of Elasticity and Modulus of rigidity
Elongation of rod ΔL = 1.4 mm
Normal stress, δ = P/A
Where P = Force acting on the cross-section
A = Area of the cross-section
Using Area, A = π/4 · d²
= π/4 · (0.0020)² = 3.14 × 10⁻⁴m²
δ = 50/3.14 × 10⁻⁴ = 159.155 MPA
E(long) = Δl/l = 1.4/600 = 2.33 × 10⁻³mm/mm
Modulus of Elasticity Е = δ/ε
= 159.155 × 10⁶/2.33 × 10⁻³ = 68.306 GPA
Also final diameter d(f) = 19.9837 mm
Initial diameter d(i) = 20 mm
Poisson said that V = Е(elasticity)/Е(long)
= - <u>( 19.9837 - 20 /20)</u>
2.33 × 10⁻³
= 0.354,
∴ v = 0.354
Also G = Е/2. (1+V)
= 68.306 × 10⁹/ 2.(1+ 0.354)
= 25.34 GPA
⇒ G = 25.34 GPA
Answer:
The distance measure from the wall = 36ft
Explanation:
Given Data:
w = 10
g =32.2ft/s²
x = 2
Using the principle of work and energy,
T₁ +∑U₁-₂ = T₂
0 + 1/2kx² -wh = 1/2 w/g V²
Substituting, we have
0 + 1/2 * 100 * 2² - (10 * 3) = 1/2 * (10/32.2)V²
170 = 0.15528V²
V² = 170/0.15528
V² = 1094.796
V = √1094.796
V = 33.09 ft/s
But tan ∅ = 3/4
∅ = tan⁻¹3/4
= 36.87°
From uniform acceleration,
S = S₀ + ut + 1/2gt²
It can be written as
S = S₀ + Vsin∅*t + 1/2gt²
Substituting, we have
0 = 3 + 33.09 * sin 36.87 * t -(1/2 * 32.2 *t²)
19.85t - 16.1t² + 3 = 0
16.1t² - 19.85t - 3 = 0
Solving it quadratically, we obtain t = 1.36s
The distance measure from the wall is given by the formula
d = VCos∅*t
Substituting, we have
d = 33.09 * cos 36. 87 * 1.36
d = 36ft
Answer:
The time taken will be "1 hour 51 min". The further explanation is given below.
Explanation:
The given values are:
Number of required layers:
= 
= 
Diameter (d):
= 1.25 mm
Velocity (v):
= 40 mm/s
Now,
The area of one layer will be:
= 
= 
The area covered every \second will be:
= 
= 
= 
The time required to deposit one layer will be:
= 
= 
The time required for one layer will be:
= 
∴ Total times required for one layer will be:
= 
= 
So,
Number of layers = 152
Therefore,
Total time will be:
= 
= 
= 