Answer:
It would be A
Step-by-step explanation:
Fifteen Seventieths :D
Answer:
-x^3+5x^2-8x+1, which is choice A
======================================
Work Shown:
f(x) = x^3 - x^2 - 3
f(x) = (x)^3 - (x)^2 - 3
f(2-x) = (2-x)^3 - (2-x)^2 - 3 ................ see note 1 (below)
f(2-x) = (2-x)(2-x)^2 - (2-x)^2 - 3 ........... see note 2
f(2-x) = (2-x)(4-4x+x^2) - (4-4x+x^2) - 3 ..... see note 3
f(2-x) = -x^3+6x^2-12x+8 - (4-4x+x^2) - 3 ..... see note 4
f(2-x) = -x^3+6x^2-12x+8 - 4+4x-x^2 - 3 ....... see note 5
f(2-x) = -x^3+5x^2-8x+1
----------
note1: I replaced every copy of x with 2-x. Be careful to use parenthesis so that you go from x^3 to (2-x)^3, same for the x^2 term as well.
note2: The (2-x)^3 is like y^3 with y = 2-x. We can break up y^3 into y*y^2, so that means (2-x)^3 = (2-x)(2-x)^2
note3: (2-x)^2 expands out into 4-4x+x^2 as shown in figure 1 (attached image below). I used the box method for this and for note 4 as well. Each inner box or cell is the result of multiplying the outside terms. Example: in row1, column1 we have 2 times 2 = 4. You could use the FOIL rule or distribution property, but the box method is ideal so you don't lose track of terms.
note4: (2-x)(4-4x+x^2) turns into -x^3+6x^2-12x+8 when expanding everything out. See figure 2 (attached image below). Same story as note 3, but it's a bit more complicated.
note5: distribute the negative through to ALL the terms inside the parenthesis of (4-4x+x^2) to end up with -4+4x-x^2
Answer:
only the circle graph
Step-by-step explanation:
Answer:
x=-2 and x = 5
Step-by-step explanation:
The solutions to the equation are where the graph crosses the x axis
We can see that the graph crosses at x=-2 and x = 5
Answer:
\[y < = 300\]
Step-by-step explanation:
Let x = number of out-of-state students at the college
Let y = number of in-state students at the college
As per the given problem, the constraints are as follows:
\[x < = 100\] --------- (1)
\[y = 3 * x\] --------- (2)
From the given equations (2), \[ x = y/3 \]
Substituting in (1):
\[y/3 < = 100\]
Or, \[y < = 300\] which is the constraint representing the incoming students.