1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alika [10]
3 years ago
6

What are the fourth roots of −3+33√i ?

Mathematics
1 answer:
vodka [1.7K]3 years ago
8 0

Answer:

In order of increasing angle measure, the fourth roots of -3 + 3√3·i are presented as follows;

\sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12}  } \right) + i \cdot sin\left(-\dfrac{\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12}   } \right) \right]

Step-by-step explanation:

The root of a complex number a + b·i is given as follows;

r = √(a² + b²)

θ = arctan(b/a)

The roots are;

\sqrt[n]{r}·[cos((θ + 2·k·π)/n) + i·sin((θ + 2·k·π)/n)]

Where;

k = 0, 1, 2,..., n -2, n - 1

For z = -3 + 3√3·i, we have;

r = √((-3)² + (3·√3)²) = 6

θ = arctan((3·√3)/(-3)) = -π/3 (-60°)

Therefore, we have;

\sqrt[4]{-3 + 3 \cdot \sqrt{3} \cdot i \right)}   = \sqrt[4]{6} \cdot \left[cos\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) \right]

When k = 0, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 0 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 0 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12}  } \right) + i \cdot sin\left(-\dfrac{\pi}{12}   } \right) \right]

When k = 1 the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 1 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 1 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12}   } \right) \right]

When k = 2, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 2 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 2 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12}   } \right) \right]

When k = 3, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 3 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 3 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12}   } \right) \right]

You might be interested in
Solve the inequality. 4x – 7 < 5
Oksanka [162]

Answer:

x < 3

Step-by-step explanation:

4x - 7 <5

4x < 12

x < 3

6 0
2 years ago
Read 2 more answers
Find the area of the triangle ABC with the coordinates of A(10, 15) B(15, 15) C(30, 9).
lions [1.4K]

Check the picture below.  so, that'd be the triangle's sides hmmm so let's use Heron's Area formula for it.

~\hfill \stackrel{\textit{\large distance between 2 points}}{d = \sqrt{( x_2- x_1)^2 + ( y_2- y_1)^2}}~\hfill~ \\\\[-0.35em] ~\dotfill\\\\ (\stackrel{x_1}{10}~,~\stackrel{y_1}{5})\qquad (\stackrel{x_2}{15}~,~\stackrel{y_2}{15}) ~\hfill a=\sqrt{[ 15- 10]^2 + [ 15- 5]^2} \\\\\\ ~\hfill \boxed{a=\sqrt{125}} \\\\\\ (\stackrel{x_1}{15}~,~\stackrel{y_1}{15})\qquad (\stackrel{x_2}{30}~,~\stackrel{y_2}{9}) ~\hfill b=\sqrt{[ 30- 15]^2 + [ 9- 15]^2} \\\\\\ ~\hfill \boxed{b=\sqrt{261}}

(\stackrel{x_1}{30}~,~\stackrel{y_1}{9})\qquad (\stackrel{x_2}{10}~,~\stackrel{y_2}{5}) ~\hfill c=\sqrt{[ 10- 30]^2 + [ 5- 9]^2} \\\\\\ ~\hfill \boxed{c=\sqrt{416}} \\\\[-0.35em] ~\dotfill

\qquad \textit{Heron's area formula} \\\\ A=\sqrt{s(s-a)(s-b)(s-c)}\qquad \begin{cases} s=\frac{a+b+c}{2}\\[-0.5em] \hrulefill\\ a=\sqrt{125}\\ b=\sqrt{261}\\ c=\sqrt{416}\\ s\approx 23.87 \end{cases} \\\\\\ A\approx\sqrt{23.87(23.87-\sqrt{125})(23.87-\sqrt{261})(23.87-\sqrt{416})}\implies \boxed{A\approx 90}

6 0
1 year ago
Jake throws a dart that hits the square shown below:
mrs_skeptik [129]
21.5.......:::..............:.::.::..
7 0
3 years ago
Deb's Cafe offers two kinds of espresso: single-shot and double-shot. Yesterday afternoon, the cafe sold 2 single-shot espressos
maks197457 [2]

Answer:

오늘하루도 트친해요수고하셨습니다 ㅊ풔ㅓㅎ나지금너무배고파죽겠는데난지금바로응모하세요!

4 0
3 years ago
You are given an unfair coin (i.e. a coin where the probability of it landing on either side is NOT 1/21/2) and told that the pr
andrey2020 [161]

Here we have a problem of probability, we will find that the probability of landing in heads is M/N = 1/3, then we have:

M + N = 1 + 3 = 4.

Let's see how we got that:

Let's define:

p = probability of landing on tails

q = probability of landing on heads.

The probability of getting at least one tails in 3 tosses is 26/27

This means that the probability of not getting tails in the 3 tosses is:

P = 1 - 26/27 = 1/27

And the case where you do not get any tails in the 3 tosses, means that in all the 3 tosses you got heads.

The probability of getting 3 heads in a row is:

P = q^3 = 1/27

Solving for q, we get:

q = ∛(1/27) = 1/3

Now we want to express q = M/N = 1/3

then we have:

M = 1

N = 3

Now we want to compute M + N = 1 + 3 = 4

If you want to learn more about probability, you can read:

brainly.com/question/24369877

6 0
2 years ago
Other questions:
  • g Problem 2. (1.4 points) Suppose A is an n × n matrix, such that A 2 + 3A − 4I = 0 where I and 0 are the n × n identity and zer
    8·1 answer
  • 5.71×0.8 = 3.26×1.45 true or false
    6·2 answers
  • It is common in many industrial areas to use a filling machine to fill boxes full of product. This occurs in the food industry a
    12·1 answer
  • Find one terminating and one repeating decimal between -1/2 and -1/3
    11·1 answer
  • The town of Smallville had a population of 700 people. Now the population is 805. What is the percent increase in the population
    8·1 answer
  • What is an expression for 43 more than t
    6·2 answers
  • May anyone please help?
    11·2 answers
  • Which function is equivalent to h(x)=10x^(2+9x-1)
    12·2 answers
  • Solve.<br><br> 2/5p=1 1/3<br> p= 8/15<br> p= 2 1/12<br> p= 3 1/3
    10·1 answer
  • The data in the table represents the volume of helium, in cubic feet, inside a balloon relative to the elapsed time in minutes.
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!