1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alika [10]
3 years ago
6

What are the fourth roots of −3+33√i ?

Mathematics
1 answer:
vodka [1.7K]3 years ago
8 0

Answer:

In order of increasing angle measure, the fourth roots of -3 + 3√3·i are presented as follows;

\sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12}  } \right) + i \cdot sin\left(-\dfrac{\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12}   } \right) \right]

Step-by-step explanation:

The root of a complex number a + b·i is given as follows;

r = √(a² + b²)

θ = arctan(b/a)

The roots are;

\sqrt[n]{r}·[cos((θ + 2·k·π)/n) + i·sin((θ + 2·k·π)/n)]

Where;

k = 0, 1, 2,..., n -2, n - 1

For z = -3 + 3√3·i, we have;

r = √((-3)² + (3·√3)²) = 6

θ = arctan((3·√3)/(-3)) = -π/3 (-60°)

Therefore, we have;

\sqrt[4]{-3 + 3 \cdot \sqrt{3} \cdot i \right)}   = \sqrt[4]{6} \cdot \left[cos\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) \right]

When k = 0, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 0 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 0 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12}  } \right) + i \cdot sin\left(-\dfrac{\pi}{12}   } \right) \right]

When k = 1 the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 1 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 1 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12}   } \right) \right]

When k = 2, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 2 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 2 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12}   } \right) \right]

When k = 3, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 3 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 3 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12}   } \right) \right]

You might be interested in
ST=<br> Help me please thank u
dmitriy555 [2]

Step-by-step explanation:

RS + ST = 8

(RS + ST)×RS = (4 + 2)×4

8 × RS = (4 + 2) × 4 = 6 × 4 = 24

RS = 24/8 = 3

RS + ST = 8

3 + ST = 8

ST = 5

8 0
2 years ago
Find JMK, JKH, HLK, HJL, LHK, JLK
nordsb [41]

Answer:

126

Step-by-step explanation:

A line is 180 degrees. I found the degree of the angles in-between 126 and M by subtracting 126 from 180. This means that M is also 126. (Plus the intersecting lines are parallel)

8 0
3 years ago
Starting at sea level a submarine rate to depth of -3/4 mile relative to sea level in 5 minutes. What was the submarine depth to
fgiga [73]
This you would have to do a proportion

5 0
3 years ago
Help!
Olin [163]

Answer:

2/16

1/8

Step-by-step explanation:

8/1=8

2/16=0.125 which is equal to 1/8

2/14=1/7

1/8=1/8 is 2/16 simplified so they are the same

14/2=7

6 0
3 years ago
If m1=9 what is the measure of 5
ikadub [295]
Ndbdbsb s sbsbsbsbsbsgs
4 0
3 years ago
Other questions:
  • 0.96 in fraction form
    12·1 answer
  • What is the equation in point-slope form for the line parallel to y=3x-3 that contains P(-4,7)?
    13·1 answer
  • Directions for constructing. Orthocenter of a triangle​
    11·1 answer
  • The merry-go-round at the fair rotates 12 times each minute, and children are 15 feet from the center of the wheel when they are
    10·2 answers
  • Error Analysis Walter sketched the diagram below. He claims it shows that the two polygons are congruent. What information is mi
    7·1 answer
  • A washing machine can hold
    15·1 answer
  • Which of the following shows the solution for the system of linear equations?
    12·1 answer
  • F r e e<br><br> <br><br> ara ARAAAAAAAA<br><br> say a joke pls i am sad ✋
    11·2 answers
  • Plssssssssssssssssssssssssssssssssssssssssssssssss
    13·2 answers
  • Please help.. no links​
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!