1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alika [10]
3 years ago
6

What are the fourth roots of −3+33√i ?

Mathematics
1 answer:
vodka [1.7K]3 years ago
8 0

Answer:

In order of increasing angle measure, the fourth roots of -3 + 3√3·i are presented as follows;

\sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12}  } \right) + i \cdot sin\left(-\dfrac{\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12}   } \right) \right]

Step-by-step explanation:

The root of a complex number a + b·i is given as follows;

r = √(a² + b²)

θ = arctan(b/a)

The roots are;

\sqrt[n]{r}·[cos((θ + 2·k·π)/n) + i·sin((θ + 2·k·π)/n)]

Where;

k = 0, 1, 2,..., n -2, n - 1

For z = -3 + 3√3·i, we have;

r = √((-3)² + (3·√3)²) = 6

θ = arctan((3·√3)/(-3)) = -π/3 (-60°)

Therefore, we have;

\sqrt[4]{-3 + 3 \cdot \sqrt{3} \cdot i \right)}   = \sqrt[4]{6} \cdot \left[cos\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) \right]

When k = 0, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 0 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 0 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12}  } \right) + i \cdot sin\left(-\dfrac{\pi}{12}   } \right) \right]

When k = 1 the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 1 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 1 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12}   } \right) \right]

When k = 2, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 2 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 2 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12}   } \right) \right]

When k = 3, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 3 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 3 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12}   } \right) \right]

You might be interested in
Yasmine has 4 containers of 4 different colors of flowers to plant. She had 1/3 of each color left over when she was done planti
olga2289 [7]

Answer:

2\frac{2}{3}

Step-by-step explanation:

Given the information

  • 4 containers of 4 different colors
  • 1/3 of each color left over
  • She had planted more than 2 1/2 of the original 4 containers

=> Total color were left = 1/3 x 4 = 4/3 of the original containers

=> Total color  were planted = (1 - 1/3) x 4 = 2/3 x 4 = 8/3 of the original containers

However,  8/3 = 2\frac{2}{3}  > 2\frac{1}{2}  

So she is true, hence, the fractions to determine the total amount of containers of flowers she planted is:  2\frac{2}{3}

Hope it will find you well

7 0
3 years ago
Which choice is an equation of the line written in point-slope form?
Sladkaya [172]

Answer:

Option 3)............... I guess so

8 0
3 years ago
<img src="https://tex.z-dn.net/?f=%285y%20%2B%209%29%286y%20-%201%29" id="TexFormula1" title="(5y + 9)(6y - 1)" alt="(5y + 9)(6y
mestny [16]
Hey there :)

( 5y + 9 )( 6y - 1 )

We need to use FOIL to expand, that is
First Terms
Outer Terms
Inner Terms
Last Terms

     First          Outer         Inner      Last
( 5y )( 6y ) + ( 5y )( - 1 ) + 9 ( 6y ) + 9 ( - 1 )
    30y²     -        5y      +    54y   -       9

Combine, if any, the like-terms
30y² + 49y - 9
7 0
3 years ago
Read 2 more answers
The coordinate plane shows the location of the houses of some of Kendra's friends.
n200080 [17]
What- I don’t get it
5 0
2 years ago
Solve:<br><br> 22,064 ÷ 394=
Kay [80]

Answer: 56

394 goes into 22064 56 times.

5 0
3 years ago
Read 2 more answers
Other questions:
  • The circumstances is 6,562.6mm what is the diameter of the target
    9·1 answer
  • Nadia cuts 3 pieces of equal length from 8 yards of ribbon. How long is each piece?
    11·2 answers
  • How do I write as a fraction a number between 2 and 3?
    5·1 answer
  • Jasmine invests $1500 in an account that earns an interest rate of 4% compounded continuously. How much money will she have in 4
    6·2 answers
  • Find the distance.<br> -3,5 and 7,-1
    13·1 answer
  • The graph of f(x) is shown. What is the value of f (x) when x= -2?
    14·1 answer
  • PLEASE HELP !!!!
    5·1 answer
  • Choose the function with the largest constant of variation? A 2-column table with 5 rows. Column 1 is labeled x with entries 1,
    11·2 answers
  • Find the value of SU
    9·1 answer
  • If a translation maps point A(-3,1) to point A′(5,5), the translation is:
    13·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!