1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Alika [10]
3 years ago
6

What are the fourth roots of −3+33√i ?

Mathematics
1 answer:
vodka [1.7K]3 years ago
8 0

Answer:

In order of increasing angle measure, the fourth roots of -3 + 3√3·i are presented as follows;

\sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12}  } \right) + i \cdot sin\left(-\dfrac{\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12}   } \right) \right]

\sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12}   } \right) \right]

Step-by-step explanation:

The root of a complex number a + b·i is given as follows;

r = √(a² + b²)

θ = arctan(b/a)

The roots are;

\sqrt[n]{r}·[cos((θ + 2·k·π)/n) + i·sin((θ + 2·k·π)/n)]

Where;

k = 0, 1, 2,..., n -2, n - 1

For z = -3 + 3√3·i, we have;

r = √((-3)² + (3·√3)²) = 6

θ = arctan((3·√3)/(-3)) = -π/3 (-60°)

Therefore, we have;

\sqrt[4]{-3 + 3 \cdot \sqrt{3} \cdot i \right)}   = \sqrt[4]{6} \cdot \left[cos\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) \right]

When k = 0, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 0 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 0 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12}  } \right) + i \cdot sin\left(-\dfrac{\pi}{12}   } \right) \right]

When k = 1 the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 1 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 1 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12}   } \right) \right]

When k = 2, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 2 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 2 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12}   } \right) \right]

When k = 3, the fourth root is presented as follows;

\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 3 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3}  + 2\cdot 3 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12}  } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12}   } \right) \right]

You might be interested in
What is the value of y−5x−3for x = 2 and y = -4
arlik [135]

Answer

-17


<u>Explanation</u>

y−5x−3 for x = 2 and y = -4

We solve this question by substituting the values of y and x.

y−5x−3 = -4 - 5(2) - 3

             = -4 - 10 -3

             = -14 - 3

            = -17

8 0
3 years ago
Read 2 more answers
Please help ill mark you brainliest!​
Galina-37 [17]
Answer:1/27

Explanation:
7 0
3 years ago
Which represents two rays that intersect at a common endpoint
aleksandr82 [10.1K]

An angle is the intersection of two noncollinear rays at a common endpoint. The rays are called sides and the common endpoint is called the vertex.

8 0
3 years ago
At his current level of consumption, Cameron gets 3 times more marginal utility from an additional game of pinball than from an
prohojiy [21]

Answer:

$0.50 x 3 = $1.50

Step-by-step explanation:

6 0
3 years ago
2.In quadratic equation ax2 + bx + c = 0, if discriminant is D= b2 - 4ac, then roots of the quadratic equation are
tino4ka555 [31]

Answer:

(2) Real and equal (i.e., repeated roots), if D = 0.

Step-by-step explanation:

.In a quadratic equation ax2 + bx + c = 0, if discriminant is D= b2 - 4ac, then roots of the quadratic equation are

Real and equal (i.e., repeated roots), if D = 0.

If the D > b² - 4ac then it's real and distinct.

3 0
3 years ago
Other questions:
  • What is 16 over 25 in percent notation
    5·2 answers
  • I really need help on where to put them fast!
    8·1 answer
  • A number to the 9 power divided by the same number to the 6 power equals 27 what is the number
    12·1 answer
  • The difference of a number and -6 is less than 9
    15·2 answers
  • M/5-3= 2 what is m in the equation
    13·2 answers
  • Maria has 3.9 meters of ribbon. She is making bows that use 0.15 meter of ribbon per bow. How many bows can Maria make?
    7·1 answer
  • Write a fraction equivalent to 14/35
    7·1 answer
  • Pls help me with this friends
    5·2 answers
  • If a+b=3 and ab=4 find the value of a3+b3
    8·1 answer
  • What number is 278 less than 6,896?
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!