Answer:
In order of increasing angle measure, the fourth roots of -3 + 3√3·i are presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12} } \right) + i \cdot sin\left(-\dfrac{\pi}{12} } \right) \right]](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%7B-%5Cdfrac%7B%5Cpi%7D%7B12%7D%20%20%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28-%5Cdfrac%7B%5Cpi%7D%7B12%7D%20%20%20%7D%20%5Cright%29%20%5Cright%5D)
![\sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12} } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12} } \right) \right]](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%7B%5Cdfrac%7B5%20%5Ccdot%20%5Cpi%7D%7B12%7D%20%20%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B5%20%5Ccdot%5Cpi%7D%7B12%7D%20%20%20%7D%20%5Cright%29%20%5Cright%5D)
![\sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12} } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12} } \right) \right]](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%7B%5Cdfrac%7B11%20%5Ccdot%20%5Cpi%7D%7B12%7D%20%20%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B11%20%5Ccdot%5Cpi%7D%7B12%7D%20%20%20%7D%20%5Cright%29%20%5Cright%5D)
![\sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12} } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12} } \right) \right]](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%7B%5Cdfrac%7B17%20%5Ccdot%20%5Cpi%7D%7B12%7D%20%20%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B17%20%5Ccdot%5Cpi%7D%7B12%7D%20%20%20%7D%20%5Cright%29%20%5Cright%5D)
Step-by-step explanation:
The root of a complex number a + b·i is given as follows;
r = √(a² + b²)
θ = arctan(b/a)
The roots are;
·[cos((θ + 2·k·π)/n) + i·sin((θ + 2·k·π)/n)]
Where;
k = 0, 1, 2,..., n -2, n - 1
For z = -3 + 3√3·i, we have;
r = √((-3)² + (3·√3)²) = 6
θ = arctan((3·√3)/(-3)) = -π/3 (-60°)
Therefore, we have;
![\sqrt[4]{-3 + 3 \cdot \sqrt{3} \cdot i \right)} = \sqrt[4]{6} \cdot \left[cos\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-60 + 2\cdot k \cdot \pi}{4} \right) \right]](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B-3%20%2B%203%20%5Ccdot%20%5Csqrt%7B3%7D%20%5Ccdot%20i%20%5Cright%29%7D%20%20%20%3D%20%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%5Cdfrac%7B-60%20%2B%202%5Ccdot%20k%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B-60%20%2B%202%5Ccdot%20k%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%5Cright%5D)
When k = 0, the fourth root is presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3} + 2\cdot 0 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3} + 2\cdot 0 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({-\dfrac{\pi}{12} } \right) + i \cdot sin\left(-\dfrac{\pi}{12} } \right) \right]](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%5Cdfrac%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%20%2B%202%5Ccdot%200%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%20%2B%202%5Ccdot%200%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%3D%20%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%7B-%5Cdfrac%7B%5Cpi%7D%7B12%7D%20%20%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28-%5Cdfrac%7B%5Cpi%7D%7B12%7D%20%20%20%7D%20%5Cright%29%20%5Cright%5D)
When k = 1 the fourth root is presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3} + 2\cdot 1 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3} + 2\cdot 1 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{5 \cdot \pi}{12} } \right) + i \cdot sin\left(\dfrac{5 \cdot\pi}{12} } \right) \right]](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%5Cdfrac%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%20%2B%202%5Ccdot%201%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%20%2B%202%5Ccdot%201%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%3D%20%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%7B%5Cdfrac%7B5%20%5Ccdot%20%5Cpi%7D%7B12%7D%20%20%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B5%20%5Ccdot%5Cpi%7D%7B12%7D%20%20%20%7D%20%5Cright%29%20%5Cright%5D)
When k = 2, the fourth root is presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3} + 2\cdot 2 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3} + 2\cdot 2 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{11 \cdot \pi}{12} } \right) + i \cdot sin\left(\dfrac{11 \cdot\pi}{12} } \right) \right]](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%5Cdfrac%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%20%2B%202%5Ccdot%202%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%20%2B%202%5Ccdot%202%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%3D%20%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%7B%5Cdfrac%7B11%20%5Ccdot%20%5Cpi%7D%7B12%7D%20%20%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B11%20%5Ccdot%5Cpi%7D%7B12%7D%20%20%20%7D%20%5Cright%29%20%5Cright%5D)
When k = 3, the fourth root is presented as follows;
![\sqrt[4]{6} \cdot \left[cos\left(\dfrac{-\dfrac{\pi}{3} + 2\cdot 3 \cdot \pi}{4} \right) + i \cdot sin\left(\dfrac{-\dfrac{\pi}{3} + 2\cdot 3 \cdot \pi}{4} \right) \right] \\= \sqrt[4]{6} \cdot \left[cos\left({\dfrac{17 \cdot \pi}{12} } \right) + i \cdot sin\left(\dfrac{17 \cdot\pi}{12} } \right) \right]](https://tex.z-dn.net/?f=%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%5Cdfrac%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%20%2B%202%5Ccdot%203%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B-%5Cdfrac%7B%5Cpi%7D%7B3%7D%20%20%2B%202%5Ccdot%203%20%5Ccdot%20%5Cpi%7D%7B4%7D%20%5Cright%29%20%5Cright%5D%20%5C%5C%3D%20%5Csqrt%5B4%5D%7B6%7D%20%5Ccdot%20%5Cleft%5Bcos%5Cleft%28%7B%5Cdfrac%7B17%20%5Ccdot%20%5Cpi%7D%7B12%7D%20%20%7D%20%5Cright%29%20%2B%20i%20%5Ccdot%20sin%5Cleft%28%5Cdfrac%7B17%20%5Ccdot%5Cpi%7D%7B12%7D%20%20%20%7D%20%5Cright%29%20%5Cright%5D)