Answer:

Explanation:
Carnot cycle
Carnot cycle have four process
1. Iso thermal expansion
2.Reversible adiabatic expansion
3. Iso thermal compression
4.Reversible adiabatic compression
This is ideal cycle for all work producing devices.All devices have efficiency less than Carnot cycle. Because in Carnot cycle all process is reversible process.
Efficiency of Carnot cycle given as

But temperature must be in Kelvin
So


Answer: hello the diagram related to your question is missing please the third image is the missing part of the question
Fx = 977.76 Ib/ft
Explanation:
<u>Estimate the force that water exerts on the pier </u>
V = 12 ft/s
D( diameter ) = 6 ft
first express the force on the first half of the cylinder as
Fx1 = -
---------------- ( 1 )
where ; Fy = 0
Ps = Po + 1/2 Pv^2 ( 1 - 4 sin^2β ) ------------- ( 2 )
Input equation (2) into equation ( 1 ) (note : assuming Po = 0 )
attached below is the remaining part of the solution
Answer:

Explanation:
Previous concepts
Angular momentum. If we consider a particle of mass m, with velocity v, moving under the influence of a force F. The angular momentum about point O is defined as the “moment” of the particle’s linear momentum, L, about O. And the correct formula is:

Applying Newton’s second law to the right hand side of the above equation, we have that r ×ma = r ×F =
MO, where MO is the moment of the force F about point O. The equation expressing the rate of change of angular momentum is this one:
MO = H˙ O
Principle of Angular Impulse and Momentum
The equation MO = H˙ O gives us the instantaneous relation between the moment and the time rate of change of angular momentum. Imagine now that the force considered acts on a particle between time t1 and time t2. The equation MO = H˙ O can then be integrated in time to obtain this:

Solution to the problem
For this case we can use the principle of angular impulse and momentum that states "The mass moment of inertia of a gear about its mass center is
".
If we analyze the staritning point we see that the initial velocity can be founded like this:

And if we look the figure attached we can use the point A as a reference to calculate the angular impulse and momentum equation, like this:

](https://tex.z-dn.net/?f=0%2B%5Csum%20%5Cint_%7B0%7D%5E%7B4%7D%2020t%20%280.15m%29%20dt%20%3D0.46875%20%5Comega%20%2B%2030kg%5B%5Comega%280.15m%29%5D%280.15m%29)
And if we integrate the left part and we simplify the right part we have

And if we solve for
we got:

Answer:
note:
<u>solution is attached in word form due to error in mathematical equation. furthermore i also attach Screenshot of solution in word due to different version of MS Office please find the attachment</u>