1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
zhannawk [14.2K]
3 years ago
7

Explain what the engineering team should advise in the following scenario.

Engineering
1 answer:
Evgesh-ka [11]3 years ago
7 0

Answer: its c

Explanation:

You might be interested in
A pitfall cited in Section 1.10 is expecting to improve the overall performance of a computer by improving only one aspect of th
Oxana [17]

Answer:

a) For this case the new time to run the FP operation would be reduced 20% so that means 100-20% =80% from the original time

(1-0.2)*70 s =56s

The reduction on this case is 70-56 s=14s

And since the new total time would be given by 250-14=236 s

b) For this case the total time is reduced 20%  so that means that the new total time would be (1-0.2)=0.8 times the original total time (1-0.2) *250s =200 s

The original time for INT operations is calculated as:

250 = 70+85+40 +t_{INT}

t_{INT}=55s

For this part the only time that was changed is assumed the INT operations so then:

200 = 70+85+40 \Delta t_{INT}

And then: \Delta t_{INT}= 200-70-85-40=5 s

c) A reduction of the total time implies that the total time would be 205 s from the results above. And the time for FP is 70, for L/S is 85 and for INT operations is 55 s, so then if we add 70+85+55=210s, we see that 210>205 so then we cannot reduce the total time 20% just reducing the branch intructions.

Explanation:

From the info given we know that a computer running a program that requires 250 s, with 70 s spent executing FP instructions, 85 s executed L/S instructions and 40 s spent executing branch instructions.

Part 1

For this case the new time to run the FP operation would be reduced 20% so that means 100-20% =80% from the original time

(1-0.2)*70 s =56s

The reduction on this case is 70-56 s=14s

And since the new total time would be given by 250-14=236 s

Part 2

For this case the total time is reduced 20%  so that means that the new total time would be (1-0.2)=0.8 times the original total time (1-0.2) *250s =200 s

The original time for INT operations is calculated as:

250 = 70+85+40 +t_{INT}

t_{INT}=55s

For this part the only time that was changed is assumed the INT operations so then:

200 = 70+85+40 \Delta t_{INT}

And then: \Delta t_{INT}= 200-70-85-40=5 s

And we can quantify the decrease using the relative change:

\% Change = \frac{5s}{55 s} *100 = 9.09\% of reduction

Part 3

A reduction of the total time implies that the total time would be 205 s from the results above. And the time for FP is 70, for L/S is 85 and for INT operations is 55 s, so then if we add 70+85+55=210s, we see that 210>205 so then we cannot reduce the total time 20% just reducing the branch intructions.

8 0
3 years ago
Steam flows steadily through an adiabatic turbine. The inlet conditions of the steam are 10 MPa, 450°C, and 80 m/s, and the exit
8090 [49]

Answer:

a) The change in Kinetic energy, KE = -1.95 kJ

b) Power output, W = 10221.72 kW

c) Turbine inlet area, A_1 = 0.0044 m^2

Explanation:

a) Change in Kinetic Energy

For an adiabatic steady state flow of steam:

KE = \frac{V_2^2 - V_1^2}{2} \\.........(1)

Where Inlet velocity,  V₁ = 80 m/s

Outlet velocity, V₂ = 50 m/s

Substitute these values into equation (1)

KE = \frac{50^2 - 80^2}{2} \\

KE = -1950 m²/s²

To convert this to kJ/kg, divide by 1000

KE = -1950/1000

KE = -1.95 kJ/kg

b) The power output, w

The equation below is used to represent a  steady state flow.

q - w = h_2 - h_1 + KE + g(z_2 - z_1)

For an adiabatic process, the rate of heat transfer, q = 0

z₂ = z₁

The equation thus reduces to :

w = h₁ - h₂ - KE...........(2)

Where Power output, W = \dot{m}w..........(3)

Mass flow rate, \dot{m} = 12 kg/s

To get the specific enthalpy at the inlet, h₁

At P₁ = 10 MPa, T₁ = 450°C,

h₁ = 3242.4 kJ/kg,

Specific volume, v₁ = 0.029782 m³/kg

At P₂ = 10 kPa, h_f = 191.81 kJ/kg, h_{fg} = 2392.1 kJ/kg, x₂ = 0.92

specific enthalpy at the outlet, h₂ = h_1 + x_2 h_{fg}

h₂ = 3242.4 + 0.92(2392.1)

h₂ = 2392.54 kJ/kg

Substitute these values into equation (2)

w = 3242.4 - 2392.54 - (-1.95)

w = 851.81 kJ/kg

To get the power output, put the value of w into equation (3)

W = 12 * 851.81

W = 10221.72 kW

c) The turbine inlet area

A_1V_1 = \dot{m}v_1\\\\A_1 * 80 = 12 * 0.029782\\\\80A_1 = 0.357\\\\A_1 = 0.357/80\\\\A_1 = 0.0044 m^2

3 0
3 years ago
determine the position d of the 6- kn load so that the average normal stress in each rod is the same.
Zinaida [17]

The load is placed at distance 0.4 L from the end of $$12 \mathrm{~mm}^{2} $ area.

<h3>What is meant by torque?</h3>

The force that can cause an object to rotate along an axis is measured as torque. Similar to how force accelerates an item in linear kinematics, torque accelerates an object in an angular direction. A vector quantity is torque.

Let the beam is of length L

Now the stress on both the end is the same now we can say that torque on the beam due to two forces must be zero

$N_1 * x=N_2 *(L-x)$

also, we know that stress at both ends are same

$\frac{N_1}{12}=\frac{N_2}{8}$

$2 * N_1=3 * N_2$

Now from two equations we have

$\frac{3}{2} N_2 * x=N_2 *(L-x)

solving the above equation we have

$x=\frac{2}{5} L

so the load is placed at distance 0.4 L from the end of $$12 \mathrm{~mm}^{2} $ area.

The complete question is:

47. the beam is supported by two rods ab and cd that have cross-sectional areas of $$12mm^2 and $$8mm^2, respectively. determine the position d of the 6-kn load so that the average normal stress in each rod is the same.

To learn more about torque refer to:

brainly.com/question/20691242

#SPJ4

7 0
2 years ago
Another focus of effective communication, according to Stephen Covey, is ensuring that:
svetoff [14.1K]

Answer:

Stephen Covey believes this principle is the key to effective interpersonal communication. Seek first to understand, then to be understood. This habit is about communicating with others. It's about developing the habit of listening carefully and really understanding the other person BEFORE giving your thoughts.

Explanation:

4 0
3 years ago
Read 2 more answers
Firefighters are holding a nozzle at the end of a hose while trying to extinguish a fire. The nozzle exit diameter is 8 cm, and
ivanzaharov [21]

Question

Determine the average water exit velocity

Answer:

53.05 m/s

Explanation:

Given information

Volume flow rate, Q=16 m^{3}/min

Diameter d= 8cm= 0.08 m

Assumptions

  • The flow is jet flow hence momentum-flux correction factor is unity
  • Gravitational force is not considered
  • The flow is steady, frictionless and incompressible
  • Water is discharged to the atmosphere hence pressure is ignored

We know that Q=AV and making v the subject then

V=\frac {Q}{A} where V is the exit velocity and A is area

Area, A=\frac {\pi d^{2}{4} where d is the diameter

By substitution

V=\frac {16\times 4}{\pi 0.08^{2}}=3183.098862 m/min

To convert v to m/s from m/s, we simply divide it by 60 hence

V=\frac {3183.098862  m/min}{60 s}=53.0516477 m/s\approx 53.05 m/s

3 0
3 years ago
Other questions:
  • Why should engineers avoid obvious patterns?
    13·2 answers
  • A soil had a liquid limit of 44, a plastic limit of 21, and a shrinkage limit of 14. In the summer, the in situ water content wa
    14·1 answer
  • Once a design is final engineer needs a plan for product
    14·1 answer
  • You have designed a treatment system for contaminant Z. The treatment system consists of a pipe that feeds into a CSTR. The pipe
    8·1 answer
  • One of the best ways to find a vacuum leak on a speed-density fuel-injection system is to read the intake air controller (LAC) c
    12·2 answers
  • WHAT IS THE EFFECT OF ICE ACCRETION ON THE LONGITUDINAL STABILITY OF AN AIRCRAFT?
    8·1 answer
  • A car is about to start but it blows up. what is the problem with the car<br> ?
    6·2 answers
  • What is the thermal efficiency of this reheat cycle in terms of enthalpies?
    11·1 answer
  • What are the partial products of 2.3 x 2.6
    15·1 answer
  • This is various straps secured on a worker to distribute the fall arrest forces. What is depicted in the image?
    6·2 answers
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!