Answer:
- max for 5th-degree: 4 turns. This function: 2 turns.
- max for 7th-degree: 6 turns. This function: 0 turns.
Step-by-step explanation:
In general, the graph of an n-th degree function can make n-1 turns. However, in specific cases, the number of turns is limited by the number of real zero-crossings of the derivative.
__
1. This 5th-degree function can have at most 4 turns. However, the derivative, f'(x) = 5x^4 -3, has only two (2) real zeros. Hence the graph of this function can only have 2 turns.
__
2. This 7th-degree function can have at most 6 turns. However, the derivative, f'(x) = -7x^6 -35x^4-12x^2, has an even-multiplicity root at x=0 only. The derivative never crosses 0. Hence the graph makes no turns.
360-142 and you get ur answer unless it’s not a 360 degree
Y=-5/3x+1
I hope this helps!
27 has to be C
I can't see the whole question for 28 and 29