Answer:
A
Step-by-step explanation:
When solving for x as an exponent, we need to use logarithms in order to undo the operation and rearrange the terms. We use log rules to bring down the exponent and solve. Logarithms are the inverse operations to exponents and vice versa. We have one special kind of logarithm called the natural logarithm whose base is e. We write it as ln. Since our base is e here, we will use the natural logarithm to rearrange and isolate x.

We begin by applying the natural logarithm to each side.

Log rules allow use to rearrange the exponent as multiplication in front of the log.

ln e as an inverse simplifies to 1.

We now apply the inverse operations for subtraction and multiplication.

Option A is correct.
Answer:
b
Step-by-step explanation:
Answer:
Zeros: x
=
1
,
−
2
,
2 End Behavior: Falls to the left and rises to the right.
Y-intercept: (0,4)
Step-by-step explanation:
mark me brainliest

has gradient

which at the point (-1, 4, 3) has a value of

I'm not sure what the given direction vector is supposed to be, but my best guess is that it's intended to say
, in which case we have

Then the derivative of
at (-1, 4, 3) in the direction of
is
