9514 1404 393
Answer:
M = 7x² +21
Step-by-step explanation:
Subtract the unwanted terms on the left from both sides.
(-7x² +6x -16) + M = 6x +5
M = 6x +5 -(-7x² +6x -16)
M = 7x² +21 . . . . simplify
Answer: 25??
Step-by-step explanation: $8×25= $200
i dont know if thats your answer thats just all the adults that could get in for $200.
-Zoey Lee
<h2 />
Answer:
try x= 4z/y
Step-by-step explanation:
As a rule of thumb, the sampling distribution of the sample proportion can be approximated by a normal probability distribution whenever the sample size is large.
<h3>What is the Central limit theorem?</h3>
- The Central limit theorem says that the normal probability distribution is used to approximate the sampling distribution of the sample proportions and sample means whenever the sample size is large.
- Approximation of the distribution occurs when the sample size is greater than or equal to 30 and n(1 - p) ≥ 5.
Thus, as a rule of thumb, the sampling distribution of the sample proportions can be approximated by a normal probability distribution when the sample size is large and each element is selected independently from the same population.
Learn more about the central limit theorem here:
brainly.com/question/13652429
#SPJ4
If you're using the app, try seeing this answer through your browser: brainly.com/question/3242555——————————
Solve the trigonometric equation:

Restriction for the solution:

Square both sides of
(i):

![\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}](https://tex.z-dn.net/?f=%5Cmathsf%7B%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2%5Ccdot%20%281-sin%5E2%5C%2Cx%29-sin%5C%2Cx%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2-2%5C%2Csin%5E2%5C%2Cx-sin%5C%2Cx%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7B-%5C%2C%5Cdfrac%7Bsin%5C%2Cx%7D%7Bcos%5E2%5C%2Cx%7D%5Ccdot%20%5Cleft%5B2%5C%2Csin%5E2%5C%2Cx%2Bsin%5C%2Cx-2%20%5Cright%5D%3D0%7D%5C%5C%5C%5C%5C%5C%20%5Cmathsf%7Bsin%5C%2Cx%5Ccdot%20%5Cleft%5B2%5C%2Csin%5E2%5C%2Cx%2Bsin%5C%2Cx-2%20%5Cright%5D%3D0%7D)
Let

So the equation becomes

Solving the quadratic equation:



You can discard the negative value for
t. So the solution for
(ii) is

Substitute back for
t = sin x. Remember the restriction for
x:

where
k is an integer.
I hope this helps. =)