The answer is B.) Freezing of water
Answer:
Explanation:
Endothermic reactions absorb energy from the surrounding, but exothermic reactions release energy to the surrounding.
B) differences in temperature
Explanation:
The factor that most directly affects the flow of ocean currents is the differences in ocean temperature from one place to another.
Ocean current is the directional movement of the ocean water in its basin.
The main cause of ocean current is differences in temperature.
- Ocean water on the surface receives direct sunlight.
- This warms and the surface and decreases their density.
- When winds blows over them, they cool and sink under their own weight.
- The less cold water in depths rise to replace them.
- This exchange of ocean water due to loss and gain of heat cause ocean current.
learn more:
Ocean density brainly.com/question/6760255
#learnwithBrainly
Answer:- B:
is the right answer.
Solution:- The balanced equation is:

We have been given with 8.75 grams of oxygen and asked to calculate the grams of hydrogen needed to react with given grams of oxygen according to the balanced equation.
From balanced equation, 1 mole of oxygen reacts with 2 moles of hydrogen.
So, let's convert grams of oxygen to moles and multiply it by the mole ratio to calculate the moles of hydrogen that are easily converted to grams on multiplying by it's molar mass.
The complete set up looks as:

= 
Hence, the right option is B:
.
Gold has a heavy enough nucleus that its electrons must travel at speeds nearing the speed of light to prevent them from falling into the nucleus. This relativistic effect applies to those orbitals that have appreciable density at the nucleus, such as s and p orbitals. These relativistic electrons gain mass and as a consequence, their orbits contract. As these s and (to some degree) p orbits are contracted, the other electrons in d and f orbitals are better screened from the nucleus and their orbitals actually expand.
Since the 6s orbital with one electron is contracted, this electron is more tightly bound to the nucleus and less available for bonding with other atoms. The 4f and 5d orbitals expand, but can't be involved in bond formation since they are completely filled. This is why gold is relatively unreactive.
Hope it helps