Answer:
By increasing the pressure, the molar concentration of N2O4 will increase
Explanation:
We have the equation 2NO2 ⇔ N2O4
This equation is reversible and exotherm. By <u>decreasing the temperature</u>, the reaction will produce more energy, so the reaction will move to the right. But a lower temperature also lowers the rate of the process, so, the temperature is set at a compromise value that allows N2O4 to be made at a reasonable rate with an equilibrium concentration that is not too unfavorable
So <u>increasing the temperature</u> will shift the equilibrium to the left. The equilibrium shifts in the direction that consumes energy.
If we d<u>ecrease the concentration of NO2</u>, the equilibrium will shift to the left, resulting in forming more reactants.
To increase the molar concentration of the product N2O4, we have to <u>increase the pressure</u> of the system.
NO2 takes up more space than N2O4, so increasing the pressure would allow the reactant to collide more form more product.
By increasing the pressure, the molar concentration of N2O4 will increase
Answer:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Explanation:
Potassium and chlorine gas combine to form potassium chloride which is an ionic compound. The reaction is a type of combination reaction in which chlorine is being added to the metal, potassium.
Potassium reacts violently with the chlorine which is yellowish green in color to produce white solid of potassium chloride.
The balanced reaction is shown below as:
2K (s) + Cl₂ (g) ⇒ 2KCl (s)
Answer:
Explanation:
When going from top to bottom in any group of the periodic table, the atomic radius always tends to increase
The answer is A :) your welcome hope this helps
1. A. All the elements in the column have similar chemical properties.
2. Substances on the periodic table cannot be broken down into other substances and are therefore elements.