A. The negative ionic radius is larger than the neutral atomic radius.
To calculate atomic mass, you have to take to weighted average of the isotopes' masses. What that means is M = RA*106 + (1 – RA)*104, where RA is relative abundance expressed in decimal form. If you simplify the right side of that equation, you get M = 2*RA + 104. Doing a little more algebra yields RA = (M –104)/2 = (104.4 – 104)/2 = 0.4 / 2 = 0.2, which is 20%. So the answer is B.
It would take 8 antacid tablets to produce 120 mL of CO2 gas.
Answer:If a liquid is heated the particles are given more energy and move faster and faster expanding the liquid. The most energetic particles at the surface escape from the surface of the liquid as a vapour as it gets warmer. Liquids evaporate faster as they heat up and more particles have enough energy to break away.
Explanation:
Answer:
S = 0.788 g/L
Explanation:
The solubility product (Kps) is an equilibrium solubization constant, which can be calculated by the equation:
![Kps = \frac{[product]^x}{[reagent]^y}](https://tex.z-dn.net/?f=Kps%20%3D%20%5Cfrac%7B%5Bproduct%5D%5Ex%7D%7B%5Breagent%5D%5Ey%7D)
Where x and y are the stoichiometric coefficients of the product and the reagent, respectively. Because of the aggregation form, the concentration of solids is always equal to 1 for use in this equation.
Analyzing the equation, we see that for 1 mol of
is necessary 2 mols of
, so if we call "x" the molar concentration of
, for
we will have 2x, so:
![Kps = [Fe^{+2}].[F^-]^2\\\\2.36x10^{-6} = x(2x)^2\\\\2.36x10^{-6} = 4x^3\\\\x^3 = 5.9x10^{-7}\\\\x = \sqrt[3]{5.9x10^{-7}} \\\\x = 8.4x10^{-3} mol/L](https://tex.z-dn.net/?f=Kps%20%3D%20%5BFe%5E%7B%2B2%7D%5D.%5BF%5E-%5D%5E2%5C%5C%5C%5C2.36x10%5E%7B-6%7D%20%3D%20x%282x%29%5E2%5C%5C%5C%5C2.36x10%5E%7B-6%7D%20%3D%204x%5E3%5C%5C%5C%5Cx%5E3%20%3D%205.9x10%5E%7B-7%7D%5C%5C%5C%5Cx%20%3D%20%5Csqrt%5B3%5D%7B5.9x10%5E%7B-7%7D%7D%20%5C%5C%5C%5Cx%20%3D%208.4x10%5E%7B-3%7D%20mol%2FL)
So, to calculate the solubility (S) of FeF2, which is in g/L, we multiply this concentration by the molar mass of FeF2, which is:
Fe = 55.8 g/mol
F = 19 g/mol
FeF2 = Fe + 2xF = 55.8 + 2x19 = 93.8 g/mol
So,
[tex]S = 8.4x10^{-3}x93.8
S = 0.788 g/L