Answer:
9 L
Explanation:
According to the question , the given reaction is -
2NO(g) + O₂(g)------->2NO₂(g)
Since ,
At STP ,
One mole of a gas occupies the volume of 22.4 L.
Hence , as given in the question -
9 L of NO , i.e .
22.4 L = 1 mol
1 L = 1 / 22.4 mol
9 L = 1 / 22.4 * 9 L = 0.40 mol
From the chemical reaction ,
The Oxygen is in excess , hence NO becomes the limiting reagent , and will determine the moles of product .
Hence ,
2 moles of NO will produce 2 moles of NO₂.
Therefore ,
0.40 mol of NO will produce 0.40 mol of NO₂.
Hence , the volume of NO₂ can be calculated as -
1 mol = 22.4 L
0.40 mol = 0.40 * 22.4 L = 9 L
The correct answer is a metal atom forms a cation, and a nonmetal atom forms an anion. This is because metals are less electronegative than nonmetals and will therefore give electrons to nonmetals. Atoms that give up electrons will have a positive charge therefore becoming a cation while atoms that accept electrons will have a negative charge therefore becoming an anion.
Ions that have the same charge can't be attracted to each other since it takes a positive and negative charge to cause attractive forces.
A less electronegative atom will transfer electrons to a more electronegative atom.
A metal (cation) can pull electrons from another metal (not an ion) but that does not form an attractive force between the two metals (You will learn more about this when you go over reduction potentials, redox reactions, and electrochemistry).
I hope this helps. Let me know if anything is unclear.
I would say compression or the absence of heat because heating a liquid makes it a gas<span />
Answer:
1) evolution of gas
2) evolution of heat
Explanation:
In this reaction, glucose is broken down into its constituents; carbon dioxide and water. The question is to decipher indicators of a chemical reaction from the equation.
If we look at the equation carefully, we will notice that a gas was evolved (CO2). The evolution of a gas indicates that a chemical reaction must have taken place. Secondly, energy is given off as heat. This is another indication that a chemical reaction has taken place.