Answer:
tan(2u)=[4sqrt(21)]/[17]
Step-by-step explanation:
Let u=arcsin(0.4)
tan(2u)=sin(2u)/cos(2u)
tan(2u)=[2sin(u)cos(u)]/[cos^2(u)-sin^2(u)]
If u=arcsin(0.4), then sin(u)=0.4
By the Pythagorean Identity, cos^2(u)+sin^2(u)=1, we have cos^2(u)=1-sin^2(u)=1-(0.4)^2=1-0.16=0.84.
This also implies cos(u)=sqrt(0.84) since cosine is positive.
Plug in values:
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.84-0.16]
tan(2u)=[2(0.4)(sqrt(0.84)]/[0.68]
tan(2u)=[(0.4)(sqrt(0.84)]/[0.34]
tan(2u)=[(40)(sqrt(0.84)]/[34]
tan(2u)=[(20)(sqrt(0.84)]/[17]
Note:
0.84=0.04(21)
So the principal square root of 0.04 is 0.2
Sqrt(0.84)=0.2sqrt(21).
tan(2u)=[(20)(0.2)(sqrt(21)]/[17]
tan(2u)=[(20)(2)sqrt(21)]/[170]
tan(2u)=[(2)(2)sqrt(21)]/[17]
tan(2u)=[4sqrt(21)]/[17]
Answer:
30
Step-by-step explanation:
(-) (-) = +
Therefore 15 - (-15) = 15 + 15 = 30
Three out of the eight are cranberry therefore three divided by eight is .375 when rounded it is .38 so it is 38% cranberry.
Answer:
∠1 = 36°
Step-by-step explanation:
All angles of a regular polygon are congruent, as are the sides. A regular decagon will have 10 congruent angles.
<h3>Exterior angles</h3>
The sum of the measures of the exterior angles of a convex polygon is always 360°. This decagon has 10 congruent exterior angles, so the measure of each is given by ...
10(∠1) = 360°
∠1 = 36° . . . . . . . . divide by 10
Answer:
you have to show the diagram ...
Step-by-step explanation: