1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
nataly862011 [7]
3 years ago
15

A 2-column table with 5 rows. Column 1 is labeled Evelyn's Scores with entries 125, 137, 138, 145, 145. Column 2 is labeled Dist

ance from the Mean with entries x, y, 0, 7, z.
What is the mean absolute deviation of Evelyn’s scores?
5.1
5.6
5.8
7
Mathematics
2 answers:
Fiesta28 [93]3 years ago
7 0

Answer:

for all the lazy readers on top the answer is.. B. 5.6:)

Step-by-step explanation:

padilas [110]3 years ago
3 0

Answer:

Column 1(X)      Column 2(mean - X)

  125                   -13

  137                     -1

  138                     0

  145                     7

  145                     7

Mean = 138

Mean Absolute Deviation : 5.6

You might be interested in
Write (8a-^3) -2/3 in simplest form
Anna71 [15]

(8a^{-3})^{\frac{-2}{3}} = \frac{a^2}{4}

<em><u>Solution:</u></em>

<em><u>Given that,</u></em>

(8a^{-3})^{\frac{-2}{3}

We have to write in simplest form

<em><u>Use the following law of exponent</u></em>

(a^m)^n = a^{mn}

Using this, simplify the given expression

(8a^{-3})^{\frac{-2}{3}} = 8^{\frac{-2}{3}} \times a^{ -3 \times \frac{-2}{3}}\\\\Simplifying\ we\ get\\\\(8a^{-3})^{\frac{-2}{3}} = 8^{\frac{-2}{3}} \times a^2\\\\We\ know\ that\ 8 = 2^3\\\\Therefore\\\\(8a^{-3})^{\frac{-2}{3}} =2^3^{\frac{-2}{3}} \times a^2\\\\(8a^{-3})^{\frac{-2}{3}} =2^{-2} \times a^2\\\\(8a^{-3})^{\frac{-2}{3}} = \frac{a^2}{4}

Thus the given expression is simplified

8 0
3 years ago
12 subtract 33 4ths
frez [133]

Answer:

3.75 or 15/4

Step-by-step explanation:

8 0
3 years ago
Write the function a a product of linear factor by grouping or using the x method or a combination of both
Sladkaya [172]
<h3><u>Answer:</u></h3>

\boxed{\boxed{\pink{\sf Option \ A \ is \ correct .}}}

<h3><u>Step-by-step explanation:</u></h3>

Given function to us is :-

\bf \implies g(x) = x^2 - 9

And we , need to write the function a a product of linear factor by grouping or using the x method or a combination of both . So let's factorise this ,

\bf \implies g(x) = x^2 - 9 \\\\\bf\implies g(x) = x^2-3^2\\\\\bf\implies \boxed{\red{\bf g(x) = (x+3)(x-3) }}\:\:\bigg\lgroup \blue{\tt Using \ (a+b)(a-b) \ = a^2-b^2 }\bigg\rgroup

I have also attached the graph of x²-9.

<h3><u>Hence </u><u>option</u><u> </u><u>A</u><u> </u><u>is</u><u> </u><u>corr</u><u>ect</u><u> </u><u>.</u></h3>

4 0
3 years ago
Under a certain transformation T, AA'BC' is the image of AABC. The perimeter of AA'B'C' is twice the perimeter of ABC. What kind
Anika [276]

The dimensions of the image are twice the dimensions of the preimage,

which indicates that the transformation is a dilation.

  • The transformation <em>T</em> is; <u>a dilation transformation with a scale factor of 2, D₂</u>

Reasons:

The transformation applied to ΔABC = T

The image of ΔABC following the transformation, T = ΔA'B'C'

The perimeter of ΔA'B'C' = Twice the perimeter of ΔABC

Therefore, we have;

A'B' + B'C' + A'C' = 2 × (AB + BC + AC)

Which gives

A'B' + B'C' + A'C' = 2·AB + 2·BC + 2·AC

By similar triangles, we have the ratio of corresponding sides as follows;

\displaystyle \frac{AB}{A'B'}  = \frac{BC}{B'C'} = \mathbf{ \frac{AC}{A'C'}}

Which gives;

\displaystyle \frac{AB}{A'B'}  = \frac{AB}{2 \cdot AB} = \frac{1}{2}

A'B' = 2·AB

Therefore;

  • Triangle ΔA'B'C' is twice the dimension of triangle ΔABC, and <em>T</em> is <u>a dilation transformation with a scale factor of 2, D₂</u>

Learn more about dilation transformation here:

brainly.com/question/2458912

3 0
2 years ago
Resolver xfa... El taller trata de division de polinomios o algo asi
luda_lava [24]

La altura del triangulo está dada por el polinomio:

p(x) = a + 4

<h3></h3><h3>¿Cual es la altura del triangulo?</h3>

Recordar que para un triangulo de base B y altura H, el area es

A = B*H/2

En este caso, sabemos que la base es B = (4*a^2 + 6)

Y el area es A = 2a^3 + 8a^2 +3a +12

Entoces la altura será un polinomio tal que:

P(a)*(4*a^2 + 6)/2 = 2a^3 + 8a^2 +3a +12

P(a)*(4*a^2 + 6) = 2*(2a^3 + 8a^2 +3a +12) = 4a^3 + 16a^2 + 6a + 24

Podemos ver que p(a) va a ser un polinomio de grado 1, entonces:

p(a) = (c*a + b)

Reemplazando eso:

(c*a + b)*(4*a^2 + 6) = 4a^3 + 16a^2 + 6a + 24

Expandiendo:

(4c)*a^3 + (6c)*a + (4b)*a^2 + 6*b = 4a^3 + 16a^2 + 6a + 24

Comparando terminos del mismo exponente, podemos ver que:

(4c) = 4

6c = 6

4b = 16

6b = 24

Resolviendo esas ecuaciones para c y b, podemos ver que:

b = 16/4 = 4

c = 4/4 = 1

Entonces la altura del triangulo está dada por el polinomio:

p(x) = a + 4

Sí quieres aprender más sober polinomios:

https://brainly.lat/tarea/17903571

#SPJ1

8 0
1 year ago
Other questions:
  • The cylinders are similar the volume of the larger cylinder is 9648 cubic inches what is the volume of the smaller cylinder
    12·2 answers
  • GH=KL<br> GH=6x+4<br> KL=10x-8<br> Solve for GH
    11·1 answer
  • 2x - 1 = 7 I need help with this equation
    11·2 answers
  • Solve for x<br> 5x + 7 = 11<br> Give your answer as a fraction in its simplest form.
    10·1 answer
  • A) Work out the size of angle x.
    6·1 answer
  • Twenty-four percent of the 25 swim team members are new on the team . how many members are new?
    7·2 answers
  • Need this to solve these two questions please
    15·1 answer
  • HELP ASAP!!! WILL MARK BRAINLIEST!
    7·1 answer
  • I need help i don’t understand
    11·1 answer
  • Bethany is working her way through school. She works two part-time jobs for a total of 23 hours a week. Job A pays $5.70 per hou
    12·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!