Inert gases are gases that don't react with other elements. What this means is that they won't combine with other elements, and trigger chemical reactions. I've posted a picture of the Periodic Table. Take a look at the VERY LAST row, all the way on the RIGHT side of the table. That row is made of up NOBLE GASES (He, Ne, Ar, Kr, etc.) Those noble gases are INERT. They are non-reactive.
Answer:
(a) Barium is produced at the negative electrode
(b) Iodine is produced at the positive electrode
Explanation:
When an electric current is passed through a solution containing electrolyte, a non spontaneous reaction is stimulated. This results in the flow of <u>positively charged ions to negatively charged electrodes(</u><u>cathode</u><u>) and negatively charged ions to positively charged electrodes(</u><u>anode</u><u>)</u>
When an electric current is passed through molten
in the electrolytic cell, the following reactions takes place:
→
+ 2
At the anode;
Iodine ions will lose an electron and will be oxidized to iodine
→
+ 
At the cathode;
Barium ions gains electrons and its reduced to barium metal
+
→ Ba
Answer:
As the use of plants as carbon sinks can be undone by events such as wildfires, the long-term reliability of these approaches has been questioned. Carbon dioxide that has been removed from the atmosphere can also be stored in the Earth's crust by injecting it into the subsurface, or in the form of insoluble carbonate salts (mineral sequestration).
HOPE IT HELPS
TAKE CARE
Explanation:
Answer:
The value of the heat capacity of the Calorimeter
= 54.4 
Explanation:
Given data
Heat added Q = 4.168 KJ = 4168 J
Mass of water
= 75.40 gm
Temperature change = ΔT = 35.82 - 24.58 = 11.24 ° c
From the given condition
Q =
ΔT +
ΔT
Put all the values in above equation we get
4168 = 75.70 × 4.18 × 11.24 +
× 11.24
611.37 =
× 11.24
= 54.4 
This is the value of the heat capacity of the Calorimeter.
Some of the NH₄+ will combine with the OH- and shift the equilibrium backwards and from NH₄OH to balance the change produced by addition of NH₄+ ions.