Answer: The heat energy produced is 53831.25KJ
Explanation:
METHANE is the main component of natural gas. It can undergo combustion reaction in air with a bright blue flame to produce carbondioxide and water. The heat of reaction (enthalpy) is negative because heat is absorbed during the chemical reaction. To calculate the heat energy produced by the combustion of one kilogram (1 kg) of methane the following steps are taken:
Molecular mass of methane =16 gm/mol.
So moles of 1 kg methane =
Given mass of methane ÷ molecular weight of methane
But the given mass = 1kg = 1000g
Therefore,
moles of 1000g methane = 1000÷16
= 62.5 moles
Hence, energy evolved = (moles of methane) × (heat of combustion)
Therefore,
heat energy produced= 62.5 × (-861.3kj)
= -53831.25kj
Answer:
You can see that it is an endothermic reaction or heat is being absorbed for the change from magnesium to magnesium oxide. So it is an endothermic reaction. So these are the four reasons why we can say that burning of magnesium ribbon in the air is considered a chemical change.
Explanation:
hope it help
Answer:
3286 grams
Explanation:
For every mol of Ni(CO)4 reactant, a mol of Ni is produced (55.99 mol). Multiply this by the molecular mass of Ni (58.69 g/mol) to give 3286 grams
Answer:
0%
Explanation:
- The probability that both of the parents are homozygous recessive is zero.
- In our case, The gene for tallness is dominant over the gene for dwarfism
- Therefore; TT is homozygous dominant while tt is homozygous recessive and Tt is heterozygous.
- Heterozygous genotype (Tt) will exhibit a tall phenotype.
- When two parents are crossed and all the offsprings are tall then the possible genotype of the parents is either;
- Homozygous dominant for both parents or
TT x TT
2. One parent is homozygous dominant and the other is homozygous recessive.
TT x Tt
- Therefore, the probability of having both parents as homozygous recessive when all the offspring are tall is Zero.
B but im not sure if im 100% correcr