One revolution is completed when a fixed point on the wheel travels a distance equal to the circumference of the wheel, which is 2π (13 cm) = 26π cm.
So we have
1 rev = 26π cm
1 rev = 2π rad
1 min = 60 s
(a) The angular velocity of the wheel is
(35 rev/min) * (2π rad/rev) * (1/60 min/s) = 7π/6 rad/s
or approximately 3.665 rad/s.
(b) The linear velocity is
(35 rev/min) * (26π cm/rev) * (1/60 min/s) = 91π/6 cm/s
or roughly 47.648 cm/s.
Answer: Total cost is $1.75
Explanation:
Since we have given that
Number of postcards bought by Doug's family= 7
Cost of each postcard including tax = $0.25
Total cost is given by

Now, we want to show this in number line :
On the number line put all the number with a difference of 0.25 and run the number line seven times and we get the answer.
Each step is of length 0.25 and there are 7 jumps to reach required answer.
So, after 7 jumps we reach at 1.75 which is the required answer.
Hence total cost is $1.75
Answer:
(-8,-3)
(-4,-1)
(0,1)
(2,2)
(6,4)
Step-by-step explanation:
One by one, substitue the x values and solve for y
Answer:
Point A would be at the coordinates, (-4, 1). Hope this helps!
Answer:
Arc length ![=\int_0^{\pi} \sqrt{1+[(4.5sin(4.5x))]^2}\ dx](https://tex.z-dn.net/?f=%3D%5Cint_0%5E%7B%5Cpi%7D%20%5Csqrt%7B1%2B%5B%284.5sin%284.5x%29%29%5D%5E2%7D%5C%20dx)
Arc length 
Step-by-step explanation:
The arc length of the curve is given by ![\int_a^b \sqrt{1+[f'(x)]^2}\ dx](https://tex.z-dn.net/?f=%5Cint_a%5Eb%20%5Csqrt%7B1%2B%5Bf%27%28x%29%5D%5E2%7D%5C%20dx)
Here,
interval ![[0, \pi]](https://tex.z-dn.net/?f=%5B0%2C%20%5Cpi%5D)
Now, 
![f'(x)=\frac{\mathrm{d} }{\mathrm{d} x}\left ( [-cos(t)]_0^{4.5x} \right )](https://tex.z-dn.net/?f=f%27%28x%29%3D%5Cfrac%7B%5Cmathrm%7Bd%7D%20%7D%7B%5Cmathrm%7Bd%7D%20x%7D%5Cleft%20%28%20%5B-cos%28t%29%5D_0%5E%7B4.5x%7D%20%5Cright%20%29)


Now, the arc length is ![\int_0^{\pi} \sqrt{1+[f'(x)]^2}\ dx](https://tex.z-dn.net/?f=%5Cint_0%5E%7B%5Cpi%7D%20%5Csqrt%7B1%2B%5Bf%27%28x%29%5D%5E2%7D%5C%20dx)
![\int_0^{\pi} \sqrt{1+[(4.5sin(4.5x))]^2}\ dx](https://tex.z-dn.net/?f=%5Cint_0%5E%7B%5Cpi%7D%20%5Csqrt%7B1%2B%5B%284.5sin%284.5x%29%29%5D%5E2%7D%5C%20dx)
After solving, Arc length 