The equation to calculate the average rate of change is: y/x
y = f(x2) - f(x1)x = x2 - x1
x1: 1 (The smaller x value. It can be any number)x2: 2 (The larger x value. It also can be any number)f(x1): The value when you plug x1 into the function.f(x2): The value when you plug x2 into the function.
If we know this, the variables for this problem are assuming the function is 10(5.5)^x:
x2: 2x1: 1f(x2): 10(5.5)^(2) = 302.5f(x1): 10(5.5)^(1)= 55
This means:y = 302.5 - 55 = 247.5x = 2 - 1 = 1
Remember: the equation for avg rate of change is y/x
So, our average rate of change for the function on the interval [1,2] is 247.5 (y/x = 247.5/1)
Answer:
0
Step-by-step explanation:
∫∫8xydA
converting to polar coordinates, x = rcosθ and y = rsinθ and dA = rdrdθ.
So,
∫∫8xydA = ∫∫8(rcosθ)(rsinθ)rdrdθ = ∫∫8r²(cosθsinθ)rdrdθ = ∫∫8r³(cosθsinθ)drdθ
So we integrate r from 0 to 9 and θ from 0 to 2π.
∫∫8r³(cosθsinθ)drdθ = 8∫[∫r³dr](cosθsinθ)dθ
= 8∫[r⁴/4]₀⁹(cosθsinθ)dθ
= 8∫[9⁴/4 - 0⁴/4](cosθsinθ)dθ
= 8[6561/4]∫(cosθsinθ)dθ
= 13122∫(cosθsinθ)dθ
Since sin2θ = 2sinθcosθ, sinθcosθ = (sin2θ)/2
Substituting this we have
13122∫(cosθsinθ)dθ = 13122∫(1/2)(sin2θ)dθ
= 13122/2[-cos2θ]/2 from 0 to 2π
13122/2[-cos2θ]/2 = 13122/4[-cos2(2π) - cos2(0)]
= -13122/4[cos4π - cos(0)]
= -13122/4[1 - 1]
= -13122/4 × 0
= 0
Answer:
The answer is 16 stones
Step-by-step explanation:
It's 8:16 because
8/1 = 8
and
2 x 8 = 16
To check your answer to see if its correct :
1/2 = 2
16/2=8
Hope this helps!! ;)