Using the binomial distribution, it is found that there is a:
a) The probability that two randomly selected 3-year-old male chipmunks will live to be 4 years old is 0.93153 = 93.153%.
b) The probability that six randomly selected 3-year-old male chipmunks will live to be 4 years old is 0.80834 = 80.834%.
c) The probability that at least one of six randomly selected 3-year-old male chipmunks will not live to be 4 years old is 0.19166 = 19.166%. This probability is not unusual, as it is greater than 5%.
-----------
For each chipmunk, there are only two possible outcomes. Either they will live to be 4 years old, or they will not. The probability of a chipmunk living is independent of any other chipmunk, which means that the binomial distribution is used to solve this question.
Binomial probability distribution

The parameters are:
- x is the number of successes.
- n is the number of trials.
- p is the probability of a success on a single trial.
In this problem:
- 0.96516 probability of a chipmunk living through the year, thus

Item a:
- Two is P(X = 2) when n = 2, thus:

The probability that two randomly selected 3-year-old male chipmunks will live to be 4 years old is 0.93153 = 93.153%.
Item b:
- Six is P(X = 6) when n = 6, then:

The probability that six randomly selected 3-year-old male chipmunks will live to be 4 years old is 0.80834 = 80.834%.
Item c:
- At least one not living is:

The probability that at least one of six randomly selected 3-year-old male chipmunks will not live to be 4 years old is 0.19166 = 19.166%. This probability is not unusual, as it is greater than 5%.
A similar problem is given at brainly.com/question/24756209
Answer:
35 years
Step-by-step explanation:
The proportion p that remains after y years is ...
p = (1/2)^(y/5.27)
In order for 1/100 to remain (the level decays from 100 times to 1 times), we have ...
.01 = .5^(y/5.27)
log(0.01) = y/5.27·log(0.5) . . . take logs
y = 5.27·log(0.01)/log(0.5) ≈ 35.01 ≈ 35 . . . . years
Answer:
a
Step-by-step explanation:
Answer:
HI ≈ 12.22
Step-by-step explanation:
tan I = GH / HI
tan 42° = 11 / HI = 0.90
HI = 11/0.90 = 12.22
With digits 8, 5, and 6, an odd number must end in 5.
So far, we have _ _ 5.
The 8 is in the hundreds place.
Now we have 8_5.
The only place left for the 6 is the tens place.
The number is 865.