Answer: it's a '40.0-kg object, not a 40.4-kg object, which would explain why the answer is different.
Step-by-step explanation:
Answer:
1675 ft
Step-by-step explanation:
For us to calculate how close the windmill is to the fire, if we imagine it as a triangle, the distance from watch tower to the fire will be:
tan θ= opposite/adjacent
opposite=140 ft
adjacent = x
θ=3°
Thus;
tan 3 = 140/x
x=140/tan 3
x = 2,671.359 ft
Now, the distance from watch tower to windmill will be:
tan θ=opposite/ adjacent
θ=8°
opposite=140 ft
adjacent=y
thus
tan 8 = 140/y
y = 140/tan8
y=996.15 ft
Now, the distance between fire and wind mill will be:
x - y = 2671.359 - 996.15
x - y = 1675.209 ≈ 1675 ft
Answer:
See below.
Step-by-step explanation:
So we have the two functions:

And we want to find:

1)
Recall that:

is the same as:

Thus, we can substitute g(x):

And substitute that into f(x):

Distribute:

Subtract and simplify:

Thus:

2)
Similarly:

Substitute f(x):

Substitute:

Distribute:

Simplify:

Therefore:

Answer:

Step-by-step explanation:
![L^{-1}[\frac{2s+4}{(s-3)^{3}} ]=](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cfrac%7B2s%2B4%7D%7B%28s-3%29%5E%7B3%7D%7D%20%5D%3D)
Using the Translation theorem to transform the s-3 to s, that means multiplying by and change s to s+3
Translation theorem:
![L^{-1}[\frac{2s+4}{(s-3)^{3}} ]=e^{3t} L^{-1}[\frac{2(s+3)+4}{s^{3}} ]](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cfrac%7B2s%2B4%7D%7B%28s-3%29%5E%7B3%7D%7D%20%5D%3De%5E%7B3t%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2%28s%2B3%29%2B4%7D%7Bs%5E%7B3%7D%7D%20%5D)
Separate the fraction in a sum:
![e^{3t} L^{-1}[\frac{2s+10}{s^{3}} ]=e^{3t} L^{-1}[\frac{2s}{s^{3}}+\frac{10}{s^{3}} ]=e^{3t} (L^{-1}[\frac{2}{s^{2}}]+ L^{-1}[\frac{10}{s^{3}}])](https://tex.z-dn.net/?f=e%5E%7B3t%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2s%2B10%7D%7Bs%5E%7B3%7D%7D%20%5D%3De%5E%7B3t%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2s%7D%7Bs%5E%7B3%7D%7D%2B%5Cfrac%7B10%7D%7Bs%5E%7B3%7D%7D%20%5D%3De%5E%7B3t%7D%20%28L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%7D%7D%5D%2B%20L%5E%7B-1%7D%5B%5Cfrac%7B10%7D%7Bs%5E%7B3%7D%7D%5D%29)
The formula for this is:
![L^{-1}[\frac{n!}{s^{n+1}} ]=t^{n}](https://tex.z-dn.net/?f=L%5E%7B-1%7D%5B%5Cfrac%7Bn%21%7D%7Bs%5E%7Bn%2B1%7D%7D%20%5D%3Dt%5E%7Bn%7D)
Modify the expression to match the formula.
![e^{3t} (2L^{-1}[\frac{1}{s^{1+1}}]+ \frac{10}{2} L^{-1}[\frac{2}{s^{2+1}}])=e^{3t} (2L^{-1}[\frac{1}{s^{1+1}}]+ 5 L^{-1}[\frac{2}{s^{2+1}}])](https://tex.z-dn.net/?f=e%5E%7B3t%7D%20%282L%5E%7B-1%7D%5B%5Cfrac%7B1%7D%7Bs%5E%7B1%2B1%7D%7D%5D%2B%20%5Cfrac%7B10%7D%7B2%7D%20L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%2B1%7D%7D%5D%29%3De%5E%7B3t%7D%20%282L%5E%7B-1%7D%5B%5Cfrac%7B1%7D%7Bs%5E%7B1%2B1%7D%7D%5D%2B%205%20L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%2B1%7D%7D%5D%29)
Solve
![e^{3t} (2L^{-1}[\frac{1}{s^{1+1}}]+ 5 L^{-1}[\frac{2}{s^{2+1}}])=e^{3t}(2t+5t^{2} )](https://tex.z-dn.net/?f=e%5E%7B3t%7D%20%282L%5E%7B-1%7D%5B%5Cfrac%7B1%7D%7Bs%5E%7B1%2B1%7D%7D%5D%2B%205%20L%5E%7B-1%7D%5B%5Cfrac%7B2%7D%7Bs%5E%7B2%2B1%7D%7D%5D%29%3De%5E%7B3t%7D%282t%2B5t%5E%7B2%7D%20%29)