Answer:
Step-by-step explanation:
-4x³(-2x³)
8x⁶
(6⁵)/(6⁴)
6
(3x³)³
27x⁹
(9¹²)/(9⁸)
9⁴
(x²)(x³)
x⁵
(x⁴)/(x²)
x²
-x(-x)(x)
x³
(x³y²)/(x³y⁴)
(1)/(y²)
-2x(x²)(-3x)
6x⁴
(9x⁷)/(3x⁶)
3x
3x²(x²)(-6)
-18x⁴
x/(x³)
1/(x²)
Upgrade to remove ads
Only $47.88/year
(x⁴)(x³)
x⁷
(12x⁵)/(36x)
x⁴/3
(x⁴y³)/(x⁴y)
y²
(-2x³)(-4x²)
8x⁵
(-3x²)³
-27x⁶
(x³y⁵)/(xy²)
x²y³
2x³(10x)³
2000x⁶
(x⁷y²)/(x⁴y²)
x³
x⁻⁴
1/x⁴
(-21x⁵y²)/(7x⁴y⁵)
-(3x)/y³
3x⁻³
3/x³
(32x³y²z⁵)/(-8xyz²)
-4x²yz³
...
x⁴y⁴
(4x⁷/7y²)²
(16x¹⁴)/(49y⁴)
...
8x³
4⁻⁴
1/(4⁴) or 1/256
...
a⁵
8⁻²
1/(8²) or 1/64
...
2c⁷
x⁻²
1/x²
...
9x²
x⁻³
1/x³
...
a⁴
x⁻⁴
1/x⁴
...
4c⁵
x²y⁻³
(x²)/(y³)
When multiplying monomials with the same base, ___________ the exponents
add
x³y⁻²
(x³)/(y²)
When dividing monomials with the same base, ______________ the exponents
subtract
x²y³z⁻⁴
(x²y³)/(z⁴)
When raising a power to a power, ________________ the exponents
multiply
x²y⁻³z⁴
(x²z⁴)/(y³)
x⁻²y⁻³
1/(x²y³)
A base raised to a zero exponent equals________________
one
(2m²)(2m³)
4m⁵
(x/y)⁻¹
y/x
4r⁻³(2r²)
8÷r
(x²/y²)⁻¹
y²/x²
2x³y⁻³(2x⁻¹y³)
4x²
(x³/y³)⁻¹
y³/x³
2y²(3x)
6y²x
(x/y)⁻²
y²/x²
4a³b²(3a⁻⁴b⁻³)
12÷(ab)
(x²/y²)⁻³
y⁶/x⁶
4r⁰
4
(2/3)⁻²
9/4
(4xy)⁻¹
1÷(4xy)
(4/5)⁻²
25/16
(3/4)⁻²
16/9
(3/4)⁻¹
4/3
(x³/x⁻⁶)
x⁹
(x²/x⁻⁵)
x⁷
x⁰
1
y⁰
1
x²y⁰
x²
x²y³z⁰
x²y³
y⁰
1
100⁰
1
(-99)⁰
1
x⁰(x⁴)(x⁻⁶)
1/x²
(x⁻³)/(x⁴)
1/x⁷
(x⁻⁴)/(x⁵)
1/x⁹
(4x³/2x⁵)⁰
1
(x⁻⁵y⁴)/(z⁻²)
(y⁴z²)/x⁵
(15x⁶y⁻⁹)/(5xy⁻¹¹)
3x⁵y²
(48x⁶y⁷z⁵)/(-6xy⁵z⁶)
-(8x⁵y²)/z
Is it a monomial? 11
Yes; 11 is a real number and an example of a constant.
Is it a monomial? a - b
No; this is the difference, not the product, of two variables.
Is it a monomial? p²/r²
No; this is the quotient, not the product, of two variables.
Is it a monomial? y
Yes; single variables are monomials.
Is it a monomial? j³k
Yes; this is the product of two variables.
Is it a monomial? 2a + 3b
No; this is the sum of two monomials.
Simplify x²(x³)(x⁶)
x¹¹
Simplify x(x²)(x⁷)
x¹⁰
Simplify (y²z)(yz²)
y³z³
Simplify (y²z²)(y³z)
y⁵z³
Simplify (a²b⁴)(a²b⁴)
a⁴b⁸
Simplify (ab²)(a³b²)
a⁴b⁴
Simplify (2x²)(3x⁵)
6x⁷
Simplify (5x⁷)(4x²)
20x⁹
Simplify (4xy³)(3x³y⁵)
12x⁴y⁸
Simplify (7x⁵y²)(x²y³)
7x⁷y⁵
Simplify (-5x³)(3x⁸)
-15x¹¹
Simplify (-2x⁴y)(-4xy)
8x⁵y²
Simplify (10²)³
10⁶ or 1,000,000
Simplify (x³)¹²
x³⁶
Simplify (-6x)²
36x²
(-3x)³
-27x³
(3xy²)²
9x²y⁴
(2x³y⁴)²
4x⁶y⁸
Find the area of a rectangle if the length is x² and the width is x⁵.
x⁷
Find the area of a square if the side length is xy.
x²y²
Find the area of a triangle with base 9x³ and height 4x.
18x⁴
Simplify (-5x²y)(3x⁴)
-15x⁶y
Simplify (2ab²c²)(4a³b²c²)
8a⁴b⁴c⁴
Simplify (3xy⁴)(-2x²)
-6x³y⁴
(4x³y)(-2x⁵)
-8x⁸y
(-15xy⁴)(-xy³)
15x²y⁷
(-xy)³(xz)
-x⁴y³z
(-4x²y)²(-½xy²)
-8x⁵y⁴
(0.2x²y³)²
0.04x⁴y⁶
(½xy³)²
¼x²y⁶
(0.4x³)³
0.064x⁹
[(x²)²]²
x⁸
[(x²)³]⁴
x²⁴
Find the area of a rectangle whose length is 6x²y⁴ and width is 3xy²
18x³y⁶
Find the area of a triangle whose base is 4x²y and height is 6xy³
12x³y⁴
Find the volume of a cube whose side length is 3x².
27x⁶
Find the volume of a rectangular prism whose side lengths are x³y, xy³, and y.
x⁴y⁵