Given:
A table of values of a linear function.
To find:
The slope, y-intercept and equation of the function.
Solution:
Take any two points on the table.
Let the points are (-1, -3) and (0, -6).
Slope of the line:




m = -3
Slope of the function = -3
y-intercept of the function is the point where x = 0.
In the table y = -6 when x = 0
y-intercept = -6
Equation of a line:
y = mx + c
where m is the slope and c is the y-intercept
y = -3x + (-6)
y = -3x - 6
Equation of a function is y = -3x - 6.
Its 12 because 4 times 12 is 48 if you add 7 to 48 you get 55
Answer:
x^2 - 8xy + 3y^2 - 2
Step-by-step explanation:
(-8xy + 2x^2 + 3y^2) - unknown = x^2 + 2
- unknown = x^2 + 2 + 8xy - 2x^2 - 3y^2
- unknown = -x^2 + 8xy - 3y^2 + 2
Unknown = x^2 - 8xy + 3y^2 - 2
Check:
(-8xy + 2x^2 + 3y^2) - (x^2 - 8xy + 3y^2 - 2)
= -8xy + 2x^2 + 3y^2 - x^2 + 8xy - 3y^2 + 2
= -8xy + 8xy + 2x^2 - x^2 + 3y^2 - 3y^2 + 2
= x^2 + 2
Answer:
96
Step-by-step explanation:
8x(5+7)
Parentheses first
8* (12)
Then multiply
96
Answer:
43-7i
Step-by-step explanation:
We are given the expression:

First, expand 3-4i in 6i+7. To expand binomial with binomial, first we expand 3 in 6i+7 then expand -4i in 6i+7.
![\displaystyle \large{[(3 \cdot 6i) + (3 \cdot 7) + ( - 4i \cdot 6i) + ( - 4i \cdot 7)]- (2 - 3i)} \\ \displaystyle \large{[18i + 21 - 24 {i}^{2} - 28i]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%5Cdisplaystyle%20%5Clarge%7B%5B%283%20%5Ccdot%206i%29%20%2B%20%283%20%5Ccdot%207%29%20%2B%20%28%20-%204i%20%5Ccdot%206i%29%20%2B%20%28%20-%204i%20%5Ccdot%207%29%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%5Cdisplaystyle%20%5Clarge%7B%5B18i%20%2B%2021%20%20-%2024%20%7Bi%7D%5E%7B2%7D%20%20-%2028i%5D-%20%282%20-%203i%29%7D%20)
Now combine like terms.
![\displaystyle \large{[ - 10i+ 21 - 24 {i}^{2} ]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20-%2024%20%7Bi%7D%5E%7B2%7D%20%5D-%20%282%20-%203i%29%7D%20)
<u>I</u><u>m</u><u>a</u><u>g</u><u>i</u><u>n</u><u>a</u><u>r</u><u>y</u><u> </u><u>U</u><u>n</u><u>i</u><u>t</u>

Therefore:-
![\displaystyle \large{[ - 10i+ 21 - 24 ( - 1) ]- (2 - 3i)} \\ \displaystyle \large{[ - 10i+ 21 + 24]- (2 - 3i)} \\ \displaystyle \large{[ - 10i+ 45]- (2 - 3i)}](https://tex.z-dn.net/?f=%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20-%2024%20%20%28%20-%201%29%20%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2021%20%20%20%2B%2024%5D-%20%282%20-%203i%29%7D%20%20%5C%5C%20%20%20%5Cdisplaystyle%20%5Clarge%7B%5B%20-%2010i%2B%2045%5D-%20%282%20-%203i%29%7D%20)
Then expand negative sign in 2-3i; remember that negative times negative is positive and negative times positive is negative.

Combine like terms.
