1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
faltersainse [42]
3 years ago
7

I’ll give brainlest to the first one who answer the one my mouse is on it’s not that one!

Mathematics
1 answer:
Natalija [7]3 years ago
4 0

Answer:

The answer is A

Step-by-step explanation:

You might be interested in
It a math question so please help me out.
il63 [147K]

Answer: I say B

Step-by-step explanation:

5 0
3 years ago
Read 2 more answers
Match the solution set given in inequality notation with the solution set given in interval motion x > 7.8
Maslowich

Answer:

(7.8, ∞)

Step-by-step explanation:

Given the inequality :

x > 7.8 ; the inequality can be explicitly interpreted as x greater than 8 ; this means that the inequality holds for all values of x above 7.8

The interval for which the inequality holds true is :

x > 7. 8 - - - > (7.8, ∞)

7 0
3 years ago
On a social studies test, James scored a 2025, Jules earned an 81%, and Scott scored a 0.815. Who earned the highest grade? Just
Airida [17]

Answer:

Scott

Step-by-step explanation:

20/25=.8     .8=80%

.815*100=81.5%

81%

After finding a decimal and multiplying by 100, you get the percent so you can compare. 81.5% is the highest, so Scott had the highest score.

Hope this helps. Please put brainliest if you can!

7 0
3 years ago
Which statements can be used to compare the characteristics of the functions
Aleks [24]
I think we need a picture to solve that
4 0
3 years ago
Find <br><img src="https://tex.z-dn.net/?f=%20%5Cfrac%7Bdy%7D%7Bdx%7D%20" id="TexFormula1" title=" \frac{dy}{dx} " alt=" \frac{d
nataly862011 [7]

Answer:

\displaystyle y' = 2x + 3\sqrt{x} + 1

General Formulas and Concepts:

<u>Pre-Algebra</u>

Order of Operations: BPEMDAS

  1. Brackets
  2. Parenthesis
  3. Exponents
  4. Multiplication
  5. Division
  6. Addition
  7. Subtraction
  • Left to Right<u> </u>

<u>Algebra I</u>

  • Terms/Coefficients
  • Anything to the 0th power is 1
  • Exponential Rule [Rewrite]:                                                                              \displaystyle b^{-m} = \frac{1}{b^m}
  • Exponential Rule [Root Rewrite]:                                                                     \displaystyle \sqrt[n]{x} = x^{\frac{1}{n}}<u> </u>

<u>Calculus</u>

Derivatives

Derivative Notation

Basic Power Rule:

  • f(x) = cxⁿ
  • f’(x) = c·nxⁿ⁻¹

Derivative Rule [Chain Rule]:                                                                                    \displaystyle \frac{d}{dx}[f(g(x))] =f'(g(x)) \cdot g'(x)

Step-by-step explanation:

<u>Step 1: Define</u>

<em>Identify</em>

<em />\displaystyle y = (x + \sqrt{x})^2<em />

<em />

<u>Step 2: Differentiate</u>

  1. Chain Rule:                                                                                                        \displaystyle y' = 2(x + \sqrt{x})^{2 - 1} \cdot \frac{d}{dx}[x + \sqrt{x}]
  2. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2(x + x^{\frac{1}{2}})^{2 - 1} \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  3. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot \frac{d}{dx}[x + x^{\frac{1}{2}}]
  4. Basic Power Rule:                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 \cdot x^{1 - 1} + \frac{1}{2}x^{\frac{1}{2} - 1})
  5. Simplify:                                                                                                             \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2}x^{-\frac{1}{2}})
  6. Rewrite [Exponential Rule - Rewrite]:                                                              \displaystyle y' = 2(x + x^{\frac{1}{2}}) \cdot (1 + \frac{1}{2x^{\frac{1}{2}}})
  7. Multiply:                                                                                                             \displaystyle y' = 2[(x + x^{\frac{1}{2}}) + \frac{x + x^{\frac{1}{2}}}{2x^{\frac{1}{2}}}]
  8. [Brackets] Add:                                                                                                 \displaystyle y' = 2(\frac{2x + 3x^{\frac{1}{2}} + 1}{2})
  9. Multiply:                                                                                                             \displaystyle y' = 2x + 3x^{\frac{1}{2}} + 1
  10. Rewrite [Exponential Rule - Root Rewrite]:                                                     \displaystyle y' = 2x + 3\sqrt{x} + 1

Topic: AP Calculus AB/BC (Calculus I/II)

Unit: Derivatives

Book: College Calculus 10e

4 0
3 years ago
Other questions:
  • An advisor to the mayor of a large city wants to estimate, within 3 minutes, the mean travel time to work for all employees who
    9·1 answer
  • What is the y-intercept of the line represented by the equation y = 2x - 3?
    11·1 answer
  • Convert into a decimal degree measure. 165° 37' 44"
    9·1 answer
  • Help meh plz plz quickly
    8·1 answer
  • 50 pounds to 35 pounds percentage of change
    15·1 answer
  • Find the perimeter <br> Simplify your answer completely
    6·2 answers
  • A circle has a center at (4, -7) and a radius of 4 units. What is the equation of this circle?
    13·1 answer
  • There are 45 students who play a woodwind instrument in the school band. Of these, 18 play the saxophone. What percent of the wo
    12·1 answer
  • In one jar, I have two balls labelled 1 and 2 respectively. In a second jar, I have three balls labelled 0, 1 and 2 respectively
    8·1 answer
  • The ratio of teachers to male students to female students in a school is 3:17:18 if the total number of students in the school i
    15·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!