The volume of a sphere is (4/3) (pi) (radius cubed).
The volume of one sphere divided by the volume of another one is
(4/3) (pi) (radius-A)³ / (4/3) (pi) (radius-B)³
Divide top and bottom by (4/3) (pi) and you have (radius-A)³ / (radius-B)³
and that's exactly the same as
( radius-A / radius-B ) cubed.
I went through all of that to show you that the ratio of the volumes of two spheres
is the cube of the ratio of their radii.
Earth radius = 6,371 km
Pluto radius = 1,161 km
Ratio of their radii = (6,371 km) / (1,161 km)
Ratio of their volumes = ( 6,371 / 1,161 ) cubed = about <u>165.2</u>
Note:
I don't like the language of the question where it asks "How many spheres...".
This seems to be asking how many solid cue balls the size of Pluto could be
packed into a shell the size of the Earth, and that's not a simple solution.
The solution I have here is simply the ratio of volumes ... how many Plutos
can fit into a hollow Earth if the Plutos are melted and poured into the shell.
That's a different question, and a lot easier than dealing with solid cue balls.
Lol I was looking for help for this question but I couldn't find it so I had to figure it out my self and the answer is 40
Step-by-step explanation:
it is solved directly by using the formula
Answer:
Heights of 29.5 and below could be a problem.
Step-by-step explanation:
Normal Probability Distribution
Problems of normal distributions can be solved using the z-score formula.
In a set with mean
and standard deviation
, the z-score of a measure X is given by:
The Z-score measures how many standard deviations the measure is from the mean. After finding the Z-score, we look at the z-score table and find the p-value associated with this z-score. This p-value is the probability that the value of the measure is smaller than X, that is, the percentile of X. Subtracting 1 by the p-value, we get the probability that the value of the measure is greater than X.
The heights of 2-year-old children are normally distributed with a mean of 32 inches and a standard deviation of 1.5 inches.
This means that 
There may be a problem when a child is in the top or bottom 5% of heights. Determine the heights of 2-year-old children that could be a problem.
Heights at the 5th percentile and below. The 5th percentile is X when Z has a p-value of 0.05, so X when Z = -1.645. Thus


Heights of 29.5 and below could be a problem.
Answer:
Your answer would be I= (2,-1) J= (2,-3) and K= (5,-2)
Step-by-step explanation:
By reversing the coordinates across the x-axis, you will reverse the y coordinate (ex. 4,1 will become 4,-1). If you reverse the coordinates across the y-axis, you will reverse the x coordinate.