Interest calculator for a $600 investment. How much will my investment of 600 dollars be worth in the future? Just a small amount saved every day, week, or month can add up to a large amount over time. In this calculator, the interest is compounded annually.
Answer: the one in 2008 has more higher scores.
Step-by-step explanation:the highest score was 15 and it was in 2008.
- Given ⇔ 1. ∠PRS and ∠VUW are supplementary
- Angles forming a linear pair sum of 180° ⇔ 3. ∠PRS + ∠SRU = 180°
- Definition of Supplementary angle ⇔ 2. ∠PRS + ∠VUW = 180°
- Transitive property of equality ⇔ 4 . ∠PRS + ∠VUW = ∠PRS + ∠SRU
- Algebra ⇔ 5. ∠VUW = ∠SRU
- Converse of Corresponding angle Postulate ⇔ Line TV || Line QS
<u>Step-by-step explanation:</u>
Here we have , ∠PRS and ∠VUW are supplementary . We need to complete the proof of TV || QS , with matching the reasons with statements .Let's do this :
- Given ⇔ 1. ∠PRS and ∠VUW are supplementary
- Angles forming a linear pair sum of 180° ⇔ 3. ∠PRS + ∠SRU = 180°
- Definition of Supplementary angle ⇔ 2. ∠PRS + ∠VUW = 180°
- Transitive property of equality ⇔ 4 . ∠PRS + ∠VUW = ∠PRS + ∠SRU
- Algebra ⇔ 5. ∠VUW = ∠SRU
- Converse of Corresponding angle Postulate ⇔ Line TV || Line QS
Above mentioned are , are the statements matched with expressions on right hand side (RHS) .
- The Corresponding Angles Postulate states that, when two parallel lines are cut by a transversal , the resulting corresponding angles are congruent .
- The converse states: If corresponding angles are congruent, then the lines cut by the transversal are parallel.
Answer:
Step-by-step explanation:
point p is on line r
line r passes through point P
line r contains point P
Answer:
<h2><em><u>Option</u></em><em><u> </u></em><em><u>C</u></em></h2>
Step-by-step explanation:
<em><u>Here</u></em><em><u>,</u></em>
<em>[</em><em>Taking</em><em> </em><em>'</em><em>A'</em><em> </em><em>=</em><em> </em><em>'</em><em>a'</em><em>]</em>
<em><u>Then</u></em><em><u> </u></em><em><u>for</u></em><em><u> </u></em><em><u>'</u></em><em><u>r</u></em><em><u>'</u></em><em><u>,</u></em>
<em><u>Hence</u></em><em><u>,</u></em>
<em><u>Option</u></em><em><u> </u></em><em><u>C</u></em><em><u> </u></em><em><u>is</u></em><em><u> </u></em><em><u>correct</u></em><em><u> </u></em><em><u>.</u></em>