What is an example of how you can use scientific inquiry to solve a real life problem.
It's a form of mechanical energy
Answer: The force does not change.
Explanation:
The force between two charges q₁ and q₂ is:
F = k*(q₁*q₂)/r^2
where:
k is a constant.
r is the distance between the charges.
Now, if we increase the charge of each particle two times, then the new charges will be: 2*q₁ and 2*q₂.
If we also increase the distance between the charges two times, the new distance will be 2*r
Then the new force between them is:
F = k*(2*q₁*2*q₂)/(2*r)^2 = k*(4*q₁*q₂)/(4*r^2) = (4/4)*k*(q₁*q₂)/r^2 = k*(q₁*q₂)/r^2
This is exactly the same as we had at the beginning, then we can conclude that if we increase each of the charges two times and the distance between the charges two times, the force between the charges does not change.
Answer:
Explanation:
Option a is correct
If puck and pick constitute a system then the momentum of the system is conserved but not this may not be valid for the puck .
Option e is correct
If puck and pick is the system then momentum is conserved but because of the presence of friction, mechanical energy is not conserved.
Friction will cause the energy to dissipate in heat.