No. Mechanical energy is not conserved. There's quite a bit of friction on the slide. So some of the potential energy is lost to heat on the way down, and the child arrives at the bottom with hot pants and less kinetic energy than you might expect.
The free-body diagram of the forces acting on the flag is in the picture in attachment.
We have: the weight, downward, with magnitude

the force of the wind F, acting horizontally, with intensity

and the tension T of the rope. To write the conditions of equilibrium, we must decompose T on both x- and y-axis (x-axis is taken horizontally whil y-axis is taken vertically):


By dividing the second equation by the first one, we get

From which we find

which is the angle of the rope with respect to the horizontal.
By replacing this value into the first equation, we can also find the tension of the rope:
Answer:
Scientific notation of 0.01 is 1×10^-2
Explanation:
Answer:
D
friction acts in the opposite direction of motion but does not affect the motion of the object
Answer:
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
Explanation:
This hypothesis is based on the fact that the speed of sound in air is v = 343 m / s with a small variation with temperature.
The speed of sound in solid soil is an average of the speed of its constituent media, giving values between
wood 3900 m / s
concrete 4000 m / s
fabrics 1540 m / s
earth 5000 m / s wave S
ground 7000 m / s P wave
we can see that the speed on solid earth is an order of magnitude greater than in air.
One way to test the hypothesis is to create two waves, one in the air and one on the ground at the same time. One of them for the elephant to get closer and another for the elephants to move away. Observe the reaction of the animal and with this we know which sound came first.
From the initial information, the wave going through the ground should arrive first.