Answer:


Explanation:
Given:
- flow rate of water,

<em>∵Density of water is 1 kg per liter</em>
∴mass flow rate of water, 
- height of pumping,

- efficiency of motor drive,

- diameter of pipe,

<u>Now the power required for pumping the water at given conditions:</u>



<u>Hence the electric power required:</u>



<u>Flow velocity is given as:</u>

where: a = cross sectional area of flow through the pipe


A yo-yo swung in a circle.
Answer:
x-component of velocity: 7.5 m/s
y-component of velocity: 13 m/s
Explanation:
This problem is pure trigonometry. Assuming you know trig, there are only a couple of steps to solving this problem. First, split the velocity into components; recall that any vector not directed along an axis has x and y components. Then, remember that sinΘ = opposite/hypotenuse. Applying this to your scenario, you get sin60° = vy/15. Multiplying this out gives you vy=15sin60. Put this into a calculator (make sure it's set to degree mode because the angle in this problem is in degrees) and you should get 12.99, which you can round up to 13 m/s. This is the velocity in the y-direction.
The procedure to find the x-velocity is very similar, but instead of using sine, we will use the cosine of theta. Recall that cosΘ=adjacent/hypotenuse. Once again plugging this scenario's numbers into that, you end up with cos60 = vₓ/15. Multiplying this out gives you vₓ = 15cos60. Once again, plug this into your calculator. 7.5 m/s should be your answer. This is the velocity in the x-direction.
By the way, a quick way to find the components of a vector, whether it's velocity, force, or whatever else, is to use these functions. Generally, if the vector points somewhere that's not along an axis, you can use this rule. The x-component of the vector is equal to hypotenuse*cosΘ and the y-component of the vector is equal to hypotenuse*sinΘ.
Answer:
Explanation:
The formula for hydrogen atomic spectrum is as follows
energy of photon due to transition from higher orbit n₂ to n₁

For layman series n₁ = 1 and n₂ = 2 , 3 , 4 , ... etc
energy of first line

10.2 eV
wavelength of photon = 12375 / 10.2 = 1213.2 A
energy of 2 nd line

= 12.08 eV
wavelength of photon = 12375 / 12.08 = 1024.4 A
energy of third line

12.75 e V
wavelength of photon = 12375 / 12.75 = 970.6 A
energy of fourth line

= 13.056 eV
wavelength of photon = 12375 / 13.05 = 948.3 A
energy of fifth line

13.22 eV
wavelength of photon = 12375 / 13.22 = 936.1 A
Answer:
Length = 2.32 m
Explanation:
Let the length required be 'L'.
Given:
Resistance of the resistor (R) = 3.7 Ω
Radius of the rod (r) = 1.9 mm = 0.0019 m [1 mm = 0.001 m]
Resistivity of the material of rod (ρ) = 
First, let us find the area of the circular rod.
Area is given as:

Now, the resistance of the material is given by the formula:

Express this in terms of 'L'. This gives,

Now, plug in the given values and solve for length 'L'. This gives,

Therefore, the length of the material required to make a resistor of 3.7 Ω is 2.32 m.