I'm pretty sure that the "block" of which you speak is one in a pattern
of them that covers the drawing you have of the rectangle, and now
I need to explain something to you:
The REASON for printing that drawing next to the question that you
partially copied is that the drawing has information that's needed to
answer the question with, and rather than repeat all that information
in the question, it just says "LOOK AT THE DRAWING !"
In fact, the whole point of the question may not be just to remind you of
what "perimeter" means. It's more likely that the purpose of this problem
is to make you pick the information you need off of a drawing.
Either way, if you'll kind of "read between the lines" of the part of the
question that you DID copy, it should be pretty obvious to you that nobody's
going nowhere in the direction of a solution without SEEing the drawing.
So my bottom-line conclusion regarding a solution for this problem is:
Not possible with the given information.
Answer:
The speed of the plane relative to the ground is 300.79 km/h.
Explanation:
Given that,
Speed of wind = 75.0 km/hr
Speed of plane relative to the air = 310 km/hr
Suppose, determine the speed of the plane relative to the ground
We need to calculate the angle
Using formula of angle

Where, v'=speed of wind
v= speed of plane
Put the value into the formula



We need to calculate the resultant speed
Using formula of resultant speed

Put the value into the formula



Hence, The speed of the plane relative to the ground is 300.79 km/h.
Through gases as the bonds are tightly bound. Mechanical waves travel by vibrating through the medium so the more tight the bonds , the faster the waves.
Complete Question
In an action movie, the villain is rescued from the ocean by grabbing onto the ladder hanging from a helicopter. He is so intent on gripping the ladder that he lets go of his briefcase of counterfeit money when he is 130 m above the water. If the briefcase hits the water 6.0 s later, what was the speed at which the helicopter was ascending?
Answer:
The speed of the helicopter is 
Explanation:
From the question we are told that
The height at which he let go of the brief case is h = 130 m
The time taken before the the brief case hits the water is t = 6 s
Generally the initial speed of the briefcase (Which also the speed of the helicopter )before the man let go of it is mathematically evaluated using kinematic equation as
Here s is the distance covered by the bag at sea level which is zero
=>
=> 
=> 