Answer:
We know that force applied per unit area is called pressure.
Pressure = Force/ Area
When force is constant than pressure is inversely proportional to area.
1- Calculating the area of three face:
A1 = 20m x 10 m =200 Square meter
A2 = 10 mx 5 m = 50 Square meter
A3 = 20m x 5 m = 100 Square meter
Therefore A1 is maximum and A2 is minimum.
2- Calculate pressure:
P = F/ A1 = 30 / 200 = 0.15 Nm⁻² ( minimum pressure)
P = F / A2 = 30 / 50 = 0.6 Nm⁻² ( maximum pressure)
Hence greater the area less will be the pressure and vice versa.
Both have positive charge. In fact, an alpha particle IS a nucleus of a Helium atom.
Kinetic energy = (1/2) (mass) (speed²).
A Physicist in the canoe, or on a raft floating downriver next to the canoe, will say that the canoe's kinetic energy is zero.
A Physicist on the riverbank, watching the canoe drift by at 1 m/s, will say that its kinetic energy is 9 Joules.
They're both correct.
Answer:
30 m/s
Explanation:
Speed is distance over time. 60 meters / 2 seconds, = 30 m/s.
Answer:
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e
Explanation:
For this problem let's use Newton's second law applied to each body
Body A
X axis
T = m_A a
Axis y
N- W_A = 0
Body B
Vertical axis
W_B - T = m_B a
In the reference system we have selected the direction to the right as positive, therefore the downward movement is also positive. The acceleration of the two bodies must be the same so that the rope cannot tension
We write the equations
T = m_A a
W_B –T = M_B a
We solve this system of equations
m_B g = (m_A + m_B) a
a = m_B / (m_A + m_B) g
In this initial case
m_A = M
m_B = M
a = M / (1 + 1) M g
a = ½ g
Let's find the tension
T = m_A a
T = M ½ g
T = ½ M g
Now we change the mass of the second block
m_B = 2M
a = 2M / (1 + 2) M g
a = 2/3 g
We seek tension for this case
T’= m_A a
T’= M 2/3 g
Let's look for the relationship between the tensions of the two cases
T’/ T = 2/3 M g / (½ M g)
T’/ T = 4/3
T’= 4/3 T
The new tension is 4/3 = 1.33 of the previous tension the answer e