<span>because in any atom the electrons are in the outer orbitals while protons are within the nucleus together with the neutrons. If energy is supplied electrons can jump to higher energy levels and leave the lower orbitals.
Especially in metals the conduction band is partially filled at room temperature with allows free flow of electrons throughout the metal thus they carry charge.
(it requires huge amounts of energy to remove a proton from the nucleus such things happen on the surface of sun).</span><span>
</span>
the force in each of the chains holding the trapeze bar is D. 330 N
Her weight has to be divided evenly so, divide 660/2= 330 N
Answer:
electronic communications may be disrupted
Explanation:
Solar Flares: They occur when the magnetic field lines carrying charged particle entangle and reorganize over the photosphere of the Sun. In these flares charged particles leave the surface of the Sun to travel outwards.
If these flares are directed towards Earth, they will interact with anything related to electricity and magnetism. Out of the given options third option is correct as the electronic communication will be disrupted. If the flares are strong a complete power blackout may occur and that would disrupt all the communication channel and power transmission. Such events have occurred in the past as well.
Answer:
Time needed: 2.5 s
Distance covered: 31.3 m
Explanation:
I'll start with the distance covered while decelerating. Since you know that the initial speed of the car is 15.0 m/s, and that its final speed must by 10.0 m/s, you can use the known acceleration to determine the distance covered by
v2f=v2i−2⋅a⋅d
Isolate d on one side of the equation and solve by plugging your values
d=v2i−v2f2a
d=(15.02−10.02)m2s−22⋅2.0ms−2
d=31.3 m
To get the time needed to reach this speed, i.e. 10.0 m/s, you can use the following equation
vf=vi−a⋅t, which will get you
t=vi−vfa
t=(15.0−10.0)ms2.0ms2=2.5 s