Evaluation of square root 169 = 13, so 10 + 13 = 23
Answer: Dimensions of A are of length [L]
Dimensions of B are of 
Dimensions of C are of 
Step-by-step explanation:
The given equation is

Since the dimension on the L.H.S of the equation is [L] , each of the terms on the right hand side should also have dimension of length[L] to be dimensionally valid
Thus
Dimensions of A = [L]
Dimensions of Bt = [L]
![Bt=[L]\\\\](https://tex.z-dn.net/?f=Bt%3D%5BL%5D%5C%5C%5C%5C)
![[B][T]=[L]](https://tex.z-dn.net/?f=%5BB%5D%5BT%5D%3D%5BL%5D)
![\\\\\therefore [B]=LT^{-1}](https://tex.z-dn.net/?f=%5C%5C%5C%5C%5Ctherefore%20%5BB%5D%3DLT%5E%7B-1%7D)
Similarly
Dimensions of ![Ct^{}2 = [L]](https://tex.z-dn.net/?f=Ct%5E%7B%7D2%20%3D%20%5BL%5D)
![Ct^{2}=[L]\\\\[C][T]^{2}=[L]\\\\\therefore [C]=LT^{-2}](https://tex.z-dn.net/?f=Ct%5E%7B2%7D%3D%5BL%5D%5C%5C%5C%5C%5BC%5D%5BT%5D%5E%7B2%7D%3D%5BL%5D%5C%5C%5C%5C%5Ctherefore%20%5BC%5D%3DLT%5E%7B-2%7D)
Answer: Hello mate!
Let's define the variable t as the time, and define t = 0 as the moment when the first skater starts to move:
We know that the speed of the first skater is 8 m/s, and we need to find the position as a function of time, then we need to integrate the velocity over time
if v1(t) = 8m/s
then p1(t) = (8m/s)*t
now we also know that the second skater has a velocity of 9m/s and enters in the frozen lake at t= 10s.
then the velocity of the second skater is: v2(t) = 9m/s, and the position is:
p2(t) = (9m/s)*(t - 10s)
now we want to know how many seconds after the second skater starts are needed for the second skater to overtake the first one.
this is equivalent to see when his positions will be equal.
so p1(t) = p2(t):
(8m/s)*t = (9m/s)(t - 10s) = (9m/s)*t - 90m
(8m/s)*t - (9m/s)*t = -90m
(-1m/s)*t = 90m
t = 90m/(1m/s) = 90s
Then in t = 90 seconds, the second skater will overtake the first one, and knowing that the second skater started at t = 10 seconds; there are 80 seconds after the second skater started needed to overtake the first skater.
Answer:
Step-by-step explanation: if you are doing subtitution then
Let's solve your system by substitution.
y=4x+14 and y=6x+8
Rewrite equations:
y=4x+14;y=6x+8
Step: Solvey=4x+14for y:
y=4x+14
Step: Substitute4x+14foryiny=6x+8:
y=6x+8
4x+14=6x+8
4x+14+−6x=6x+8+−6x(Add -6x to both sides)
−2x+14=8
−2x+14+−14=8+−14(Add -14 to both sides)
−2x=−6−2x−2=−6−2
(Divide both sides by -2)
x=3
Step: Substitute3forxiny=4x+14:
y=4x+14
y=(4)(3)+14
y=26(Simplify both sides of the equation)
Answer:
x=3 and y=26