<h2>
Explanation:</h2><h2>
</h2>
The diagram for this problem is shown below. Point E is the intersection of the two diagonals and we know that:
![\angle BCE=\beta \\ \\ \angle DCE=\theta](https://tex.z-dn.net/?f=%5Cangle%20BCE%3D%5Cbeta%20%5C%5C%20%5C%5C%20%5Cangle%20DCE%3D%5Ctheta)
Every internal angle of any rectangle measures 90 degrees, so:
![\beta +\alpha=90 \\ \\ (4x-23)+(5+5x)=90 \\ \\ \\ Isolating \ x: \\ \\ (4x+5x)+(5-23)=90 \\ \\ 9x-18=90 \\ \\ 9x=108 \\ \\ x=\frac{108}{9}=12](https://tex.z-dn.net/?f=%5Cbeta%20%2B%5Calpha%3D90%20%5C%5C%20%5C%5C%20%284x-23%29%2B%285%2B5x%29%3D90%20%5C%5C%20%5C%5C%20%5C%5C%20Isolating%20%5C%20x%3A%20%5C%5C%20%5C%5C%20%284x%2B5x%29%2B%285-23%29%3D90%20%5C%5C%20%5C%5C%209x-18%3D90%20%5C%5C%20%5C%5C%209x%3D108%20%5C%5C%20%5C%5C%20x%3D%5Cfrac%7B108%7D%7B9%7D%3D12)
So:
![\beta=4x-23=4(12)-23=25^{\circ}](https://tex.z-dn.net/?f=%5Cbeta%3D4x-23%3D4%2812%29-23%3D25%5E%7B%5Ccirc%7D)
So the measure of angle BEC can be found as follows:
We know that triangle ΔCEB is an isosceles triangle because the diagonals of any rectangle measure the same. So
![\angle EBC=\beta](https://tex.z-dn.net/?f=%5Cangle%20EBC%3D%5Cbeta)
The sum of internal angles of any triangle add up to 180 degrees, so:
![\beta + \beta+\angle BEC=180^{\circ} \\ \\ 2\beta+\angle BEC=180^{\circ} \\ \\ \angle BEC=180^{\circ}-2\beta \\ \\ \angle BEC=180^{\circ}-2(25^{\circ}) \\ \\ \angle BEC=180^{\circ}-50^{\circ} \\ \\ \boxed{\angle BEC=130^{\circ}}}](https://tex.z-dn.net/?f=%5Cbeta%20%2B%20%5Cbeta%2B%5Cangle%20BEC%3D180%5E%7B%5Ccirc%7D%20%5C%5C%20%5C%5C%202%5Cbeta%2B%5Cangle%20BEC%3D180%5E%7B%5Ccirc%7D%20%5C%5C%20%5C%5C%20%5Cangle%20BEC%3D180%5E%7B%5Ccirc%7D-2%5Cbeta%20%5C%5C%20%5C%5C%20%5Cangle%20BEC%3D180%5E%7B%5Ccirc%7D-2%2825%5E%7B%5Ccirc%7D%29%20%5C%5C%20%5C%5C%20%5Cangle%20BEC%3D180%5E%7B%5Ccirc%7D-50%5E%7B%5Ccirc%7D%20%5C%5C%20%5C%5C%20%5Cboxed%7B%5Cangle%20BEC%3D130%5E%7B%5Ccirc%7D%7D%7D)
30+8/5=31.6 you have to break the whole question down to get the answer.
Answer:
Kindly check explanation
Step-by-step explanation:
Given the following :
Equation of regression line :
Yˆ = −114.05+2.17X
X = Temperature in degrees Fahrenheit (°F)
Y = Number of bags of ice sold
On one of the observed days, the temperature was 82 °F and 66 bags of ice were sold.
X = 82°F ; Y = 66 bags of ice sold
1. Determine the number of bags of ice predicted to be sold by the LSR line, Yˆ, when the temperature is 82 °F.
X = 82°F
Yˆ = −114.05+2.17(82)
Y = - 114.05 + 177.94
Y = 63.89
Y = 64 bags
2. Compute the residual at this temperature.
Residual = Actual value - predicted value
Residual = 66 - 64 = 2 bags of ice
I don’t understand what you’re saying ?