Matter is a slightly archaic word for something with mass, as in the conservation of matter (which must be paired with the conservation of energy to still hold true. Mass can be converted back and forth between energy, so therefore so can matter. Of course relativistic mass is conserved as it's a function of the energy of an object in that reference frame.
Answer:

Explanation:
We will need a balanced equation with masses, moles, and molar masses, so let’s gather all the information in one place.
Mᵣ: 44.01
C₃H₈ + 5O₂ ⟶ 3CO₂ + 4H₂O
n/mol: 1.5
1. Calculate the moles of CO₂
The molar ratio is 3 mol CO₂:1 mol C₃H₈

2. Calculate the mass of CO₂.

<span>Due to limitations on typography, I will have to describe the equation instead of actually writing it.
Crude appearance.
18 18 0
F --> O + e
9 8 1
Detailed description. Each of the 3 components have both a left superscript and a left subscript which is a superscript and a subscript to the LEFT of the main figure unlike the usual right side that you see subscripts and superscripts.
The equation will be F with an 18 left superscript and a 9 left subscript to represent Florine with atomic weight of 18 and 9 protons.
Followed by a right arrow to indicate the direction the reaction is going.
Followed by the letter O with a left superscript of 18 and a left subscript of 8 to represent Oxygen with atomic weight of 18 and 8 protons.
Followed by a plus sign to indicate more.
Followed by either the lower case letter "e" or the upper case Greek character beta with a left superscript of 0 and a left subscript of 1 or +1 to represent the positron being emitted with a positive charge and an atomic weight of 0.</span>
Complex meaning more complicated and detailed in difficulty
Explanation:
We will balance equation which describes the reaction between sulfuric acid and sodium bicarbonate: as follows.
Next we will calculate how many moles of
are present in 85.00 mL of 1.500 M sulfuric acid.
As, Molarity = 
1.500 M = 
n = 0.1275 mol
Now set up and solve a stoichiometric conversion from moles of
to grams of
. As, the molar mass of
is 84.01 g/mol.
= 21.42 g
So unfortunately, 15.00 grams of sodium bicarbonate will "not" be sufficient to completely neutralize the acid. You would need an additional 6.42 grams to complete the task.