1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
kotykmax [81]
4 years ago
9

What is the change in internal energy if 60 J of heat are released from a

Physics
1 answer:
lana [24]4 years ago
7 0

Answer:

60 J of heat are released from the system: Q=-60 J

20 J of work is done on the system: W=-20 J

∆U=Q-W

∆U=-60-(-20)

∆U=-40 J

Explanation:

If the heat is released from the system, Q should be negative.

If the heat is gained by the system, Q should be positive.

If the work is done on the system, W should be negative.

If the work is done by the system, W should be positive.

You might be interested in
A circular saw blade with radius 0.175 m starts from rest and turns in a vertical plane with a constant angular acceleration of
adelina 88 [10]

Answer:

x = 11.23  m

Explanation:

For this interesting exercise, we must use angular kinematics, linear kinematics and the relationship between angular and linear quantities.

Let's reduce to SI system units

    θ = 155 rev (2pi rad / rev) = 310π rad

    α = 2.00rev / s2 (2pi rad / 1 rev) = 4π rad / s²

Let's look for the angular velocity at the time the piece is released, with starting from rest the initial angular velocity is zero (wo = 0)

    w² = w₀² + 2 α θ  

    w =√ 2 α θ

    w = √(2 4pi 310pi)

    w = 156.45  rad / s

The relationship between angular and linear velocity

    v = w r

    v = 156.45  0.175

    v = 27.38 m / s

In this part we have the linear speed and the height that it travels to reach the floor, so with the projectile launch equations we can find the time it takes to arrive

    y = v_{oy} t - ½ g t²

As it leaves the highest point its speed is horizontal

   y = 0 - ½ g t²

   t = √ (-2y / g)

   t = √ (-2 (-0.820) /9.8)

   t = 0.41 s

With this time we calculate the horizontal distance, because the constant horizontal speed

   x = vox t

   x = 27.38 0.41

   x = 11.23  m

5 0
3 years ago
Write 3.5 seconds as milliseconds
Phantasy [73]
3.5 seconds is 3500 milliseconds.
5 0
3 years ago
Read 2 more answers
Sandy is whirling a ball attached to a string in a horizontal circle over his head. If Sandy doubles the speed of the ball, what
jeka57 [31]

The tension in the string B) It quadruples.

Explanation:

The ball is in uniform circular motion in a horizontal circle, so the tension in the string is providing the centripetal force that keeps the ball in circular motion. So we can write:

T= m\frac{v^2}{r}

where:

T is the tension in the string

m is the mass of the ball

v is the speed of the ball

r is the radius of the circle (the lenght of the string)

In this problem, we are told that the speed of the ball is doubled, so

v' = 2v

Substituting into the previous equation, we find the new tension in the string:

T' = m \frac{(2v)^2}{r}=4(m\frac{v^2}{r})=4T

Therefore, the tension in the string will quadruple.

Learn more about circular motion:

brainly.com/question/2562955

brainly.com/question/6372960

#LearnwithBrainly

6 0
3 years ago
A force of constant magnitude pushes a box up a vertical surface, as shown in the figure.
Ray Of Light [21]

The work done on the box by the applied force is zero.

The work done by the force of gravity is 75.95 J

The work done on the box by the normal force is 75.95 J.

<h3>The given parameters:</h3>
  • Mass of the box, m = 3.1 kg
  • Distance moved by the box, d = 2.5 m
  • Coefficient of friction, = 0.35
  • Inclination of the force, θ = 30⁰

<h3>What is work - done?</h3>
  • Work is said to be done when the applied force moves an object to a certain distance

The work done on the box by the applied force is calculated as;

W = Fd cos(\theta)\\\\W = (ma)d \times cos(\theta)

where;

a is the acceleration of the box

The acceleration of the box is zero since the box moved at a constant speed.

W = (0) d \times cos(30)\\\\W = 0 \ J

The work done by the force of gravity is calculated as follows;

W = mg \times d\\\\W = 3.1 \times 9.8 \times 2.5 \\\\W = 75.95 \ J

The work done on the box by the normal force is calculated as follows;

W = (F_n) \times d\\\\W = (mg + F sin\theta) \times d\\\\W = (mg + 0) \times d\\\\W = mgd\\\\W = 3.1 \times 9.8 \times 2.5\\\\W = 75.95 \ J

Learn more about work done here: brainly.com/question/8119756

8 0
2 years ago
A plane travels 2.5 KM at an angle of 35 degrees to the ground, then changes direction and travels 5.2 km at an angle of 22 degr
Solnce55 [7]

Answer:

7.7 km 26°

Explanation:

The total x component is:

x = 2.5 cos(35°) + 5.2 cos(22°) = 6.87

The total y component is:

y = 2.5 sin(35°) + 5.2 sin(22°) = 3.38

The magnitude is:

d = √(x² + y²)

d = 7.7 km

The direction is:

θ = atan(y/x)

θ = 26°

5 0
3 years ago
Other questions:
  • which part of a circuit creates an electric force field that makes it possible for the circuit to work
    12·1 answer
  • Why have fossil fuels become our primary energy resource
    12·2 answers
  • A solenoid has a cross-sectional area of 6.0 3 1024 m2, consists of 400 turns per meter, and carries a current of 0.40 A. A 10-t
    11·1 answer
  • A 150-kg crate rests in the bed of a truck that slows from 50 km/h to a stop in 12 s. The coefficient of static friction between
    9·1 answer
  • 1. If an object that stands 3 centimeters high is placed 12 centimeters in front of a plane
    13·1 answer
  • A small car of mass m and a large car of mass 4m drive along a highway at constant speeds VS and VL. They approach a curve of ra
    9·1 answer
  • Someone plz answer this quickly!!!
    10·1 answer
  • What should Isla write in the areas marked A, B, and C?
    15·2 answers
  • Please help! The image produced by a concave mirror is ? .
    6·2 answers
  • A 63.0kg sprinter starts a race with an acceleration of 24.0m/s/s . what is the net force of him
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!