Answer:
(a) 
(b) 5220 j
(c) 1740 watt
(d) 3446.66 watt
Explanation:
We have given mass m = 290 kg
Initial velocity u = 0 m/sec
Final velocity v = 6 m/sec
Time t = 3 sec
From first equation of motion
v = u+at
So 
(a) We know that force is given by
F = ma
So force will be 
(b) From second equation of motion we know that

We know that work done is given by
W = F s = 580×9 =5220 j
(c) Time is given as t = 3 sec
We know that power is given as

(d) Time t = 1.5 sec
So 
Answer:
4.384 * 10^13
Explanation:
Given the expression :
[(6.67 * 10^-11) * (1.99 * 10^30)] ÷ [(1.74*10^3)*(1.74*10^3)]
Applying the laws of indices
[(6.67 * 1.99) *10^(-11 + 30)] ÷ [(1.74 * 1.74) * 10^3+3]
13.2733 * 10^19 ÷ 3.0276 * 10^6
(13.2733 / 3.0276) * 10^(19 - 6)
4.3840996 * 10^13
= 4.384 * 10^13
Answer:
B. It is too slow to observe directly
Explanation:
They move too slow to be able to observe how they move.
I hope it helps! Have a great day!
bren~
The mass of Mg-24 is 24.30506 amu, it contains 12 protons and 12 neutrons.
Theoretical mass of Mg-24:
The theoretical mass of Mg-24 is:
Hydrogen atom mass = 12 × 1.00728 amu = 12.0874 amu
Neutron mass = 12 x 1.008665 amu = 12.104 amu
Theoretical mass = Hydrogen atom mass + Neutron mass = 24.1913 amu
Note that the mass defect is:
Mass defect = Actual mass - Theoretical mass : 24.30506 amu- 24.1913 amu= 0.11376 amu
Calculating the binding energy per nucleon:

So approximately 4.41294 Mev/necleon
Answer:
a. 3 s.
Explanation:
Given;
angular acceleration of the wheel, α = 4 rad/s²
time of wheel rotation, t = 4 s
angle of rotation, θ = 80 radians
Apply the kinematic equation below,

Given initial angular velocity, ω₀ = 0
Apply the kinematic equation below;

Therefore, the wheel had been in motion for 3 seconds.
a. 3 s.