1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Elis [28]
3 years ago
9

5m -3m + 4 (m + 2) answer

Mathematics
2 answers:
inn [45]3 years ago
8 0
6m+8 is the answer to this question
Sauron [17]3 years ago
6 0

Answer:

6m+8

Step-by-step explanation:

1) Distribute

5m - 3m + 4m + 8

2) Combine like terms

6m+8

You might be interested in
Celery<br> celery<br> celery<br> celery<br> celery
ad-work [718]

Answer:

d, 3 5/8

Step-by-step explanation:

3 0
3 years ago
Solve 3(2x-5)-4x+8=-1
777dan777 [17]

Answer:

6

Step-by-step explanation:

Step 1:

3 ( 2x - 5 ) - 4x + 8 = - 1

Step 2:

5x - 15 - 4x + 8 = - 1

Step 3:

x - 15 + 8 = - 1

Step 4:

x - 7 = - 1

Answer:

x = 6

Hope This Helps :)

7 0
3 years ago
Pls someone help me with part b and their is 5.6 acres
kramer
$0.03+$0.04=$0.15x4=$0.60
6 0
3 years ago
“encontrar la integral indefinida y verificar el resultado mediante derivación”
Oliga [24]

I=\displaystyle\int\frac x{(1-x^2)^3}\,\mathrm dx

Haz la sustitución:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{y^3}=\frac1{4y^2}+C=\frac1{4(1-x^2)^2}+C

Para confirmar el resultado:

\dfrac{\mathrm dI}{\mathrm dx}=\dfrac14\left(-\dfrac{2(-2x)}{(1-x^2)^3}\right)=\dfrac x{(1-x^2)^3}

I=\displaystyle\int\frac{x^2}{(1+x^3)^2}\,\mathrm dx

Sustituye:

y=1+x^3\implies\mathrm dy=3x^2\,\mathrm dx

\implies I=\displaystyle\frac13\int\frac{\mathrm dy}{y^2}=-\frac1{3y}+C=-\frac1{3(1+x^3)}+C

(Te dejaré confirmar por ti mismo.)

I=\displaystyle\int\frac x{\sqrt{1-x^2}}\,\mathrm dx

Sustituye:

y=1-x^2\implies\mathrm dy=-2x\,\mathrm dx

\implies I=\displaystyle-\frac12\int\frac{\mathrm dy}{\sqrt y}=-\frac12(2\sqrt y)+C=-\sqrt{1-x^2}+C

I=\displaystyle\int\left(1+\frac1t\right)^3\frac{\mathrm dt}{t^2}

Sustituye:

u=1+\dfrac1t\implies\mathrm du=-\dfrac{\mathrm dt}{t^2}

\implies I=-\displaystyle\int u^3\,\mathrm du=-\frac{u^4}4+C=-\frac{\left(1+\frac1t\right)^4}4+C

Podemos hacer que esto se vea un poco mejor:

\left(1+\dfrac1t\right)^4=\left(\dfrac{t+1}t\right)^4=\dfrac{(t+1)^4}{t^4}

\implies I=-\dfrac{(t+1)^4}{4t^4}+C

4 0
4 years ago
Please explain how to do this question ;^;
Elena-2011 [213]
I need to know which question it is though
8 0
3 years ago
Other questions:
  • leah is placing books on a one meter long shelf. If each book is 2 cm wide, how many books will fit on the shelf?
    6·1 answer
  • Cindy's Gift Shoppe purchased 8-inch candles at $9.95 a dozen, less a 25 percent trade discount. If the owner wishes to sell the
    13·1 answer
  • | x | = 6<br> Solve for x
    11·2 answers
  • What is the domain of the function y=2√x-5<br><br> A. x≥-5<br> B. x≥2<br> C. x≥5<br> D. x≥10
    15·1 answer
  • To the nearest tenth, the P( -2.1 &lt; z &lt; 0) is:
    7·1 answer
  • How many cubes with side lengths of 1/2 cm does it take to fill the prism?
    5·1 answer
  • 1.4 + 3.2 x 2.95 =?<br> First one to help is gonna be marked brainliest.
    6·2 answers
  • Two classes at Liberty Middle School are setting up imaginary banks for an economics project. Class 1 has $50 in a savings accou
    12·1 answer
  • Which value from the list below, when substituted for x, would represent an acute triangle with side lengths x, x+ 4, and 20? As
    11·2 answers
  • What is the length of AC?
    7·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!