0=6n- 36
6n-36
6 x-5-36
35-36
n=-1
I hope this help
so the line is dog so we know the full line is 60 units long. The 2 parts (do and og) add up to the full length so we can make the equation:
(4x-3)+(2x+21)=60
6x+18=60
6x=42
x=7
if you need to fine do or og, just plug in x to its equation
Answer:
x=5
y=0
or
x=1
y=12
Step-by-step explanation:
I guess you can make it up as long as it equals 15, I guess that's what the question is saying??
Piecewise Function is like multiple functions with a speific/given domain in one set, or three in one for easier understanding, perhaps.
To evaluate the function, we have to check which value to evalue and which domain is fit or perfect for the three functions.
Since we want to evaluate x = -8 and x = 4. That means x^2 cannot be used because the given domain is less than -8 and 4. For the cube root of x, the domain is given from -8 to 1. That meand we can substitute x = -8 in the cube root function because the cube root contains -8 in domain but can't substitute x = 4 in since it doesn't contain 4 in domain.
Last is the constant function where x ≥ 1. We can substitute x = 4 because it is contained in domain.
Therefore:
![\large{ \begin{cases} f( - 8 ) = \sqrt[3]{ - 8} \\ f(4) = 3 \end{cases}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%20%5Cbegin%7Bcases%7D%20f%28%20-%208%20%29%20%3D%20%20%20%5Csqrt%5B3%5D%7B%20-%208%7D%20%20%5C%5C%20f%284%29%20%3D%203%20%5Cend%7Bcases%7D%7D)
The nth root of a can contain negative number only if n is an odd number.
![\large{ \begin{cases} f( - 8 ) = \sqrt[3]{ - 2 \times - 2 \times - 2} \\ f(4) = 3 \end{cases}} \\ \large{ \begin{cases} f( - 8 ) = - 2\\ f(4) = 3 \end{cases}}](https://tex.z-dn.net/?f=%20%5Clarge%7B%20%20%5Cbegin%7Bcases%7D%20f%28%20-%208%20%29%20%3D%20%20%20%5Csqrt%5B3%5D%7B%20-%202%20%5Ctimes%20-%20%202%20%5Ctimes%20%20%20-%202%7D%20%20%5C%5C%20f%284%29%20%3D%203%20%5Cend%7Bcases%7D%7D%20%5C%5C%20%20%5Clarge%7B%20%20%5Cbegin%7Bcases%7D%20f%28%20-%208%20%29%20%3D%20%20-%202%5C%5C%20f%284%29%20%3D%203%20%5Cend%7Bcases%7D%7D)
Answer