Answer:
The price of 1 adult ticket is 12 dollars, and the price of a ticket for one student is 7 dollars
Step-by-step explanation:
Make a system of equations for the two days that the play was shown.
Let x = the price of an adult ticket
Let y = the price of a student ticket
For the first day:
<h3>9x+8y=164</h3>
For the second day:
<h3>2x+7y=73</h3>
Now, we can solve using the elimination method. Multiply the first equation by 2 and the second equation by 9. Then swap the order of the equations.
<h3>18x+63y= 657</h3><h3>-</h3><h3>18x+16y= 328</h3><h3>0x+ 47y= 329</h3><h3>divide both sides by 47</h3><h3>y = 7</h3><h3>Plug in 7 for y for the 2nd equation</h3><h3>2x+7(7)=73</h3><h3>2x+49=73</h3><h3>subtract 49 from both sides</h3><h3>2x= 24</h3><h3>divide both sides by 2</h3><h3>x = 12 </h3><h3>Check:</h3><h3>2(12)+7(7)=73</h3><h3>24+49= 73!</h3>
Convert 79% to a decimal which is .79
Then you multiply .79 by 32 which is 25.28
Your answer is 25.28
Answer:
<em><u>5 is called coefficient</u></em>
<em><u> m is called variable </u></em>
<em><u>3 is called degree....</u></em>
Answer:
C. 434π
Step-by-step explanation:
Given:
Radius (r) = 7 in.
Height (h) = 24 in.
Required:
Surface area of the cylinder
Solution:
S.A = 2πrh + 2πr²
Plug in the values
S.A = 2*π*7*24 + 2*π*7²
S.A = 336π + 98π
S.A = 434π