Using a trigonometric identity, it is found that the values of the cosine and the tangent of the angle are given by:
<h3>What is the trigonometric identity using in this problem?</h3>
The identity that relates the sine squared and the cosine squared of the angle, as follows:

In this problem, we have that the sine is given by:

Hence, applying the identity, the cosine is given as follows:






The tangent is given by the sine divided by the cosine, hence:




More can be learned about trigonometric identities at brainly.com/question/24496175
#SPJ1
I think the domain and range are infinite
Answer: WY=4.4 mm
Step-by-step explanation:
WY=WX/2
WY=8.8/2
WY=4.4 mm
Answer:
Im not sure, but I think its like this...
Step-by-step explanation:
(16+5) + 10 = 16 + (5+10)
I hope this is correct!!
Answer:
B = 34.2°
C = 58.2° or 121.8°
c= 10.6
Step-by-step explanation:
Step 1
Finding c
We calculate c using Pythagoras Theorem
c²= a² + b²
c = √a² + b²
a= 8, b = 7
c = √8² + 7²
c = √64 + 49
c = √(113)
c = 10.630145813
Approximately c = 10.6
Step 2
Find B
We solve this using Sine rule
a/sin A = b/sin B
A = 40°
a = 8
b = 7
Hence,
8/sin 40° = 7/sin B
8 × sin B = sin 40° × 7
sin B = sin 40° × 7/8
B = arc sin (sin 40° × 7/8)
B ≈34.22465°
Approximately = 34.2°
Step 3
We find C
Find B
We solve this using Sine rule
b/sin B = c/sin C
B = 34.2°
b = 7
c = 10.6
C = ?
Hence,
7/sin 34.2° = 10.6/sin C
7 × sin C = sin 34.2 × 10.6
sin C = sin 34.2° × 10.6/7
C = arc sin (sin 34.2° × 10.6/7)
C = arcsin(0.85)
C= 58.211669383
Approximately C = 58.2°
Or = 180 - 58.2
C = 121.8°