Assuming that you have a triangular prism, the ray of light will undergo refraction twice. The first time is the transition from air to flint glass on the entry face, and the second time is the transition from the flint glass to air from the exit face. With the available data, there are two possible solution since saying "20Âş from the normal" isn't enough information. Depending upon which side of the normal that 20 degrees is, the interior triangle will have the angles of 35, 90-r, and 55+r, or 35, 90+r, 55-r degrees where r is the angle from the normal after the 1st refraction. I will provide both possible solutions and you'll need to actually select the correct one based upon the actual geometry which I don't know because you didn't provide the figure or diagram that you were provided with.
The equation for refraction is:
(sin a1)/(sin a2) = n1/n2
where
a1,a2 = angles from the normal to the surface.
n1,n2 = index of refraction for the transmission mediums.
For this problem, we've been given an a1 of 20Âş and an n1 of 1.60. For n2, we will use air which at STP has an index of refraction of 1.00029. So
(sin a1)/(sin a2) = n1/n2
(sin 20)/(sin a2) = 1.00029/1.60
0.342020143/(sin a2) = 0.62518125
0.342020143 = 0.62518125(sin a2)
0.547073578 = sin a2
asin(0.547073578) = a2
33.16647891 = a2
So the angle from the normal INSIDE the prism is 33.2Âş. The resulting angle from the surface of the entry face will be either 90-33.2 or 90+33.2 depending upon the geometry. So the 2 possible triangles will be either 35Âş, 56.8Âş, 88.2Âş or 35Âş, 123.2Âş, 21.8Âş. with a resulting angle from the normal of either 1.8Âş or 68.2Âş. I can't tell you which one is correct since you didn't tell me which side of the normal the incoming ray came from. So let's calculate both possible exits.
1.8Âş
(sin a1)/(sin a2) = n1/n2
(sin 1.8)/(sin a2) = 1.6/1.00029
0.031410759/(sin a2) = 1.599536135
0.031410759= 1.599536135(sin a2)
0.019637418= sin(a2)
asin(0.019637418) = a2
1.125213477 = a2
68.2Âş
(sin a1)/(sin a2) = n1/n2
(sin 68.2)/(sin a2) = 1.6/1.00029
0.928485827/(sin a2) = 1.599536135
0.928485827 = 1.599536135(sin a2)
0.58047193 = sin a2
asin(0.58047193) = a2
35.48374252 = a2
So if the interior triangle is acute, the answer is 1.13Âş and if the interior triangle is obtuse, the answer is 35.48Âş
D) The reflected ray travels parallel to the principal axis
Answer:
The relation between velocity and time is a simple one during uniformly accelerated, straight-line motion. The longer the acceleration, the greater the change in velocity. Change in velocity is directly proportional to time when acceleration is constant.
~Hoped this helped~
~Brainiliest?~
<span>The equilibrium position is that at which the pendulum is at its lowest point; it is called this because, absent any other forces acting upon it, this is the point at which the pendulum would be at a stable, motionless equilibrium. It is also the point at which the pendulum, having been released from above, has translated its starting gravitational potential energy fully into kinetic energy. As such, this means that at this point the pendulum is at its maximum D) velocity.</span>
B. Refraction causes this to happen.
Hope this helps!!