Lower frequency waves have less strength to penetrate. How bad a wave is all depends on how well it penetrates our bodies. Visible light doesn't penetrate ur skin, but UV rays (higher than visible) can go through our skin, making it <span>bad" for us. High frequency waves have more energy and move faster</span>
Answer:
a) t = 1.75 s
b) x = 31.5 m
Explanation:
a) The time at which Tom should drop the net can be found using the following equation:

Where:
: is the final height = 0
y₀: is the initial height = 15 m
g: is the gravity = 9.81 m/s²
: is the initial vertical velocity of the net = 0 (it is dropped from rest)


Hence, Tom should drop the net at 1.75 s before Jerry is under the bridge.
b) We can find the distance at which is Jerry when Tom drops the net as follows:


Then, Jerry is at 31.5 meters from the bridge when Jerry drops the net.
I hope it helps you!
Answer:
T = 1.766(M-m) Nm where M and m are the 2 masses of the objects
Explanation:
Let m and M be the masses of the 2 objects and M > m so the system would produce torque and rotational motion on the pulley. Force of gravity that exert on each of the mass are mg and Mg. Since Mg > mg, the net force on the system is Mg - mg or g(M - m) toward the heavier mass.
Ignore friction and string mass, and let g = 9.81 m/s2, the net torque on the pulley is the product of net force and arm distance to the pivot point, which is pulley radius r = 0.18 m
T = Fr = g(M - m)0.18 = 0.18*9.81(M - m) = 1.766(M-m) Nm
Answer:
m = 0.0125 kg
Explanation:
Let us apply the formula for the speed of a wave on a string that is under tension:

where F = tension force
μ = mass per unit length
Mass per unit length is given as:
μ = m / l
where m = mass of the string
l = length of the string
This implies that:

Let us make mass, m, the subject of the formula:

From the question:
F = 20 N
l = 4.50 m
v = 85 m/s
Therefore:

Answer:
graph A
Explanation:
the slope of the distance-time graph is speed, speed is a scalar (with magnitudes but no direction)
but the slope for the velocity time graph is acceleration, acceleration is vector quantity ( has magnitude and direction)