Answer:
The mass of the Al-duckie should be 30 kg.
Explanation:
We will use the first law of thermodynamics:
ΔU = m·Cv·ΔT
Since the specific heat of water is 4.185 J(gºC), the change in the water's internal energy would be:
ΔU = 100 kg · 4.185 J(gºC) · (42ºC - 38ºC) = 1674 KJ
Given that no heat is lost, all the internal energy that the water loses while cooling down will transfer to the duckie. So, if the duckie has ΔU = 1674 KJ and its final temperature is the desired 38 ºC, we can calculate its mass using the first law again:
![m=\frac{\Delta{U}}{Cv{\Delta{T}}}=\frac{1674}{0.9*[38-(-24)]}=30Kg](https://tex.z-dn.net/?f=m%3D%5Cfrac%7B%5CDelta%7BU%7D%7D%7BCv%7B%5CDelta%7BT%7D%7D%7D%3D%5Cfrac%7B1674%7D%7B0.9%2A%5B38-%28-24%29%5D%7D%3D30Kg)
As seen from the Earth, the Sun, Moon, and planets all appear to move along the ecliptic. ... Unlike the Sun, however, the planets don't always move in the same direction along the ecliptic. They usually move in the same direction as the Sun, but from time to time they seem to slow down, stop, and reverse direction!
Because of various events in their (unknown) past history that resulted in deviations from the theoretical orbit. That formed in the plain of the ecliptic.
Capturing a large passing comet or asteroid might do it.
Answer:
0.2 m/s^2
Explanation:
initial speed 14m/s
final speed 20m/s
acceleration:
(20m/s - 14m /s) /30s = (6m/s)/30s = 0.2 m/s^2
Answer:
The capital of Prince Edward Island is Charlottetown.
Explanation:
hope this helps, and if it did, please mark brainliest :)
Answer:
A) T.
Explanation:
Kepler's third law states that the orbital period (T) of a satellite is related with the radius (R) and the mass of the object (M) it orbits:
So the orbital period is independent of the mass of the satellite, that means no matter the mass every satellite at a radius R around the earth have an orbital period A.