It's commonly referred to as an electric current.
The body will take 20 seconds to cover a distance of 1000 m i.e. 1 km
Answer:
Fr = 26.83 [N]
Explanation:
To solve this problem we must use the Pythagorean theorem, since the forces are vector quantities, that is, they have magnitude and density. Therefore the Pythagorean theorem is suitable for the solution of this problem.
![F_{r}=\sqrt{(12)^{2}+(24)^{2} } \\F_{r}=26.83[N]](https://tex.z-dn.net/?f=F_%7Br%7D%3D%5Csqrt%7B%2812%29%5E%7B2%7D%2B%2824%29%5E%7B2%7D%20%20%7D%20%5C%5CF_%7Br%7D%3D26.83%5BN%5D)
Based on Hooke's law, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
<h3>What is the spring constant?</h3>
The spring constant or stiffness constant of an elastic spring is constant which describes the extent a bit forceapplied to an elastic spring will extend it.
- Spring constant, K = force/extension
Assuming, a body's muscle mechanism is a spring obeying Hooke's law, the effective mass of the spring with mass m is 1/3 of the mass of the spring = m/3
The potential energy that can be stored = ke^2 / 2
where K is spring constant and e is the extension produced.
Therefore, the spring constant of the the body's muscle mechanism is the ratio of force to extension, the effective mass is m/3 and the potential energy that can be stored is ke^2 / 2.
Learn more about Hooke's law at: brainly.com/question/12253978