While you are sleeping, approximately between 30% and 70% of the energy your cells use is derived from fats, fats and proteins are the main source of energy and the percentage is going to depend on the type of body and metabolism.
Answer: The human body uses three types of molecules to yield the necessary energy to drive ATP synthesis: fats, proteins, and carbohydrates. Mitochondria are the main site for ATP synthesis in mammals, although some ATP is also synthesized in the cytoplasm.
Explanation:
Cytoskeletal filaments provide the basis for cell movement. For instance, cilia and (eukaryotic) flagella move as a result of microtubules sliding along each other. In fact, cross sections of these tail-like cellular extensions show organized arrays of microtubules.
The cytoskeleton of eukaryotic cells is made of filamentous proteins, and it provides mechanical support to the cell and its cytoplasmic constituents. All cytoskeletons consist of three major classes of elements that differ in size and in protein composition.
Microtubules are the largest type of filament, with a diameter of about 25 nanometers (nm), and they are composed of a protein called tubulin. Actin filaments are the smallest type, with a diameter of only about 6 nm, and they are made of a protein called actin. Intermediate filaments, as their name suggests, are mid-sized, with a diameter of about 10 nm. Unlike actin filaments and microtubules, intermediate filaments are constructed from a number of different subunit proteins.
The cytoskeleton is a structure that helps cells maintain their shape and internal organization, and it also provides mechanical support that enables cells to carry out essential functions like division and movement.
To learn more about cytoskeleton here
brainly.com/question/17543212
#SPJ4
Vacuoles do /not/ digest molecules.
Explanation:
- Visual and auditory stimuli both occur in the form of waves. Although the two stimuli are very different in terms of composition, wave forms share similar characteristics that are especially important to our visual and auditory perceptions. Waveforms of different types surround us at all times, however we only have receptors which are sensitive to specific types of wavelengths. In this section, we describe the physical properties of the waves as well as the perceptual experiences associated with them.
AMPLITUDE AND WAVELENGTH
- Two physical characteristics of a wave are amplitude and wavelength (figure below). The amplitude of a wave is the height of a wave as measured from the highest point on the wave (peak or crest) to the lowest point on the wave (trough). Wavelength refers to the length of a wave from one peak to the next.
The amplitude or height of a wave is measured from the peak to the trough. The wavelength is measured from peak to peak.
Wavelength is directly related to the frequency of a given wave form. Frequency refers to the number of waves that pass a given point in a given time period and is often expressed in terms of hertz (Hz), or cycles per second. Longer wavelengths will have lower frequencies, and shorter wavelengths will have higher frequencies