A. but I would double check on that one first.
<span> I am assuming you want to prove:
csc(x)/[1 - cos(x)] = [1 + cos(x)]/sin^3(x).
</span>
<span>If we multiply the LHS by [1 + cos(x)]/[1 + cos(x)], we get:
LHS = csc(x)/[1 - cos(x)]
= {csc(x)[1 + cos(x)]/{[1 + cos(x)][1 - cos(x)]}
= {csc(x)[1 + cos(x)]}/[1 - cos^2(x)], via difference of squares
= {csc(x)[1 + cos(x)]}/sin^2(x), since sin^2(x) = 1 - cos^2(x).
</span>
<span>Then, since csc(x) = 1/sin(x):
LHS = {csc(x)[1 + cos(x)]}/sin^2(x)
= {[1 + cos(x)]/sin(x)}/sin^2(x)
= [1 + cos(x)]/sin^3(x)
= RHS.
</span>
<span>I hope this helps! </span>
Answer:
43.66
Step-by-step explanation:
Just calculate 59% of 74
I think answer is 9.3 after it’s rounded
use the formula a^2 +b^2=c^2
Answer:
you would have to deposit $432.
Step-by-step explanation:
it's actually pretty simple. all you have to do is add 182+250 which equals 432. if you want to check your work, add 432 to -250 and you should get 182.