1answer.
Ask question
Login Signup
Ask question
All categories
  • English
  • Mathematics
  • Social Studies
  • Business
  • History
  • Health
  • Geography
  • Biology
  • Physics
  • Chemistry
  • Computers and Technology
  • Arts
  • World Languages
  • Spanish
  • French
  • German
  • Advanced Placement (AP)
  • SAT
  • Medicine
  • Law
  • Engineering
Sergeu [11.5K]
3 years ago
7

Whats 3,648 dividing 91?

Mathematics
2 answers:
cupoosta [38]3 years ago
6 0

Answer:

<h3><em>40,08791209</em></h3>

Step-by-step explanation:

Nuetrik [128]3 years ago
3 0

Answer:

Assuming you meant 3,648/91 it would be 40.0989

Step-by-step explanation:

However if you meant 91/3,648 your answer would be 0.0249

You might be interested in
Square root of 2tanxcosx-tanx=0
kobusy [5.1K]
If you're using the app, try seeing this answer through your browser:  brainly.com/question/3242555

——————————

Solve the trigonometric equation:

\mathsf{\sqrt{2\,tan\,x\,cos\,x}-tan\,x=0}\\\\ \mathsf{\sqrt{2\cdot \dfrac{sin\,x}{cos\,x}\cdot cos\,x}-tan\,x=0}\\\\\\ \mathsf{\sqrt{2\cdot sin\,x}=tan\,x\qquad\quad(i)}


Restriction for the solution:

\left\{ \begin{array}{l} \mathsf{sin\,x\ge 0}\\\\ \mathsf{tan\,x\ge 0} \end{array} \right.


Square both sides of  (i):

\mathsf{(\sqrt{2\cdot sin\,x})^2=(tan\,x)^2}\\\\ \mathsf{2\cdot sin\,x=tan^2\,x}\\\\ \mathsf{2\cdot sin\,x-tan^2\,x=0}\\\\ \mathsf{\dfrac{2\cdot sin\,x\cdot cos^2\,x}{cos^2\,x}-\dfrac{sin^2\,x}{cos^2\,x}=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left(2\,cos^2\,x-sin\,x \right )=0\qquad\quad but~~cos^2 x=1-sin^2 x}

\mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\cdot (1-sin^2\,x)-sin\,x \right]=0}\\\\\\ \mathsf{\dfrac{sin\,x}{cos^2\,x}\cdot \left[2-2\,sin^2\,x-sin\,x \right]=0}\\\\\\ \mathsf{-\,\dfrac{sin\,x}{cos^2\,x}\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}\\\\\\ \mathsf{sin\,x\cdot \left[2\,sin^2\,x+sin\,x-2 \right]=0}


Let

\mathsf{sin\,x=t\qquad (0\le t


So the equation becomes

\mathsf{t\cdot (2t^2+t-2)=0\qquad\quad (ii)}\\\\ \begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{2t^2+t-2=0} \end{array}


Solving the quadratic equation:

\mathsf{2t^2+t-2=0}\quad\longrightarrow\quad\left\{ \begin{array}{l} \mathsf{a=2}\\ \mathsf{b=1}\\ \mathsf{c=-2} \end{array} \right.


\mathsf{\Delta=b^2-4ac}\\\\ \mathsf{\Delta=1^2-4\cdot 2\cdot (-2)}\\\\ \mathsf{\Delta=1+16}\\\\ \mathsf{\Delta=17}


\mathsf{t=\dfrac{-b\pm\sqrt{\Delta}}{2a}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{2\cdot 2}}\\\\\\ \mathsf{t=\dfrac{-1\pm\sqrt{17}}{4}}\\\\\\ \begin{array}{rcl} \mathsf{t=\dfrac{-1+\sqrt{17}}{4}}&\textsf{ or }&\mathsf{t=\dfrac{-1-\sqrt{17}}{4}} \end{array}


You can discard the negative value for  t. So the solution for  (ii)  is

\begin{array}{rcl} \mathsf{t=0}&\textsf{ or }&\mathsf{t=\dfrac{\sqrt{17}-1}{4}} \end{array}


Substitute back for  t = sin x.  Remember the restriction for  x:

\begin{array}{rcl} \mathsf{sin\,x=0}&\textsf{ or }&\mathsf{sin\,x=\dfrac{\sqrt{17}-1}{4}}\\\\ \mathsf{x=0+k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=arcsin\bigg(\dfrac{\sqrt{17}-1}{4}\bigg)+k\cdot 360^\circ}\\\\\\ \mathsf{x=k\cdot 180^\circ}&\textsf{ or }&\mathsf{x=51.33^\circ +k\cdot 360^\circ}\quad\longleftarrow\quad\textsf{solution.} \end{array}

where  k  is an integer.


I hope this helps. =)

3 0
3 years ago
estamos construyendo una carretera que enlace los puntos a = 12 ,21 y b =(17,23) otro punto se encuentra en c =(3,9) es posible
Nadusha1986 [10]

Answer:

is not possible

Step-by-step explanation:

<u><em>The question in English is</em></u>

we are building a road that links the points a = (12 ,21) and b =(17,23) another point is in c =(3,9) it is possible that a single road allows to join these three points?

we know that

The formula to calculate the slope between two points is equal to

m=\frac{y2-y1}{x2-x1}

step 1

Find the slope ab

we have

a = (12 ,21) and b =(17,23)

substitute

m=\frac{23-21}{17-12}

m=\frac{2}{5}

step 2

Find the slope ac

we have

a = (12 ,21) and c =(3,9)

substitute

m=\frac{9-21}{3-12}

m=\frac{-12}{-9}

simplify

m=\frac{4}{3}

step 3

Compare slopes ab and ac

The slopes are different

That means ----> is not possible that a single road allows to join these three points

7 0
3 years ago
A triangle is graphed in the coordinate plane. The vertices of the triangle have coordinates (–3, 1), (1, 1), and (1, –2). What
vladimir2022 [97]

Answer:

The perimeter of the triangle is 12\ units

Step-by-step explanation:

Let

A(-3,1),B(1,1),C(1,-2)

we know that

The perimeter of triangle is equal to

P=AB+BC+AC

the formula to calculate the distance between two points is equal to

d=\sqrt{(y2-y1)^{2}+(x2-x1)^{2}}

step 1

Find the distance AB

A(-3,1),B(1,1)

substitute in the formula

AB=\sqrt{(1-1)^{2}+(1+3)^{2}}

AB=\sqrt{(0)^{2}+(4)^{2}}

AB=4\ units

step 2

Find the distance BC

B(1,1),C(1,-2)

substitute in the formula

BC=\sqrt{(-2-1)^{2}+(1-1)^{2}}

BC=\sqrt{(-3)^{2}+(0)^{2}}

BC=3\ units

step 3

Find the distance AC

A(-3,1),C(1,-2)

substitute in the formula

AC=\sqrt{(-2-1)^{2}+(1+3)^{2}}

AC=\sqrt{(-3)^{2}+(4)^{2}}

AC=5\ units

step 4

Find the perimeter

P=AB+BC+AC

substitute the values

P=4+3+5=12\ units

6 0
3 years ago
192 rounded to nearest tenth?
Andrews [41]

There is no TENTH in 192 so 192 rounded to the nearest TENTH is 192.


If you meant TEN then 192 rounded to the nearest TEN is 190.

Good Luck!

5 0
3 years ago
Read 2 more answers
Need answer asap *** 50 POINTS
lara31 [8.8K]
I’m pretty sure it’s B if not try D
3 0
3 years ago
Other questions:
  • How do I find the measurement of angle A with 85, 10x, and 8x + 5?
    11·2 answers
  • A sledgehammer weighs 18 pounds on Earth and 4 pounds on the planet Namar. Which of the following proportions could you use to d
    15·1 answer
  • What is 8+2x+7x equal
    9·2 answers
  • MATHEMATICS Matemáticas
    11·1 answer
  • 5h/4 , for h = -8 i need in a sentence
    13·1 answer
  • 5. How many solutions will the following system of equations have?<br> y = -x +4<br> x² + y² = 16
    9·1 answer
  • 69 + 12 can be rewritten as 3 (_*_)
    11·2 answers
  • sophia has $8 to spend on lunch .does she have enough money for a sandwich a drink and a bag of chip?​
    10·2 answers
  • What is the value of x?
    8·2 answers
  • Q: Solve by the Extraction of Roots method: -<br><br> -5x²=-50
    14·1 answer
Add answer
Login
Not registered? Fast signup
Signup
Login Signup
Ask question!