Answer: Yes, and she will have 4 cups leftover
Step-by-step explanation:
1 Quart = 4 cups
Convert the quarts: 7 * 4 = 28
Find the amount of cups needed in total: 12* 2 = 24
Subtract to see if possible: 28- 24 = 4
The statement is expressed algebraically as
(x/43) - 87 = -75
Answer:
64
Step-by-step explanation:
can be found by first finding
then taking that result and putting it into the function
.
means we are going to take the expression
and evaluate it for
:


So
.
So we have this so far:
.
was found by replacing
in
with
.
Answer:
% Remaining![= [1-(1/2)^{\frac{t}{2.6}}]x100](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7Bt%7D%7B2.6%7D%7D%5Dx100%20)
And replacing the value t =5.5 hours we got:
% Remaining![= [1-(1/2)^{\frac{5.5}{2.6}}]x100 =76.922\%](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7B5.5%7D%7B2.6%7D%7D%5Dx100%20%3D76.922%5C%25)
Step-by-step explanation:
Previous concepts
The half-life is defined "as the amount of time it takes a given quantity to decrease to half of its initial value. The term is most commonly used in relation to atoms undergoing radioactive decay, but can be used to describe other types of decay, whether exponential or not".
Solution to the problem
The half life model is given by the following expression:

Where A(t) represent the amount after t hours.
represent the initial amount
t the number of hours
h=2.6 hours the half life
And we want to estimate the % after 5.5 hours. On this case we can begin finding the amount after 5.5 hours like this:

Now in order to find the percentage relative to the initial amount w can use the definition of relative change like this:
% Remaining = 
We can take common factor
and we got:
% Remaining![= [1-(1/2)^{\frac{t}{2.6}}]x100](https://tex.z-dn.net/?f=%20%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7Bt%7D%7B2.6%7D%7D%5Dx100%20)
And replacing the value t =5.5 hours we got:
% Remaining ![= [1-(1/2)^{\frac{5.5}{2.6}}]x100 =76.922\%](https://tex.z-dn.net/?f=%3D%20%5B1-%281%2F2%29%5E%7B%5Cfrac%7B5.5%7D%7B2.6%7D%7D%5Dx100%20%3D76.922%5C%25)
9514 1404 393
Answer:
x +7
Step-by-step explanation:
The argument of the absolute value function is positive for any x > -7. The required domain is a subset of that, so the absolute value function does not change its argument.
|x+7| for x ≥ 7 is x +7