<span>Point B has coordinates (3,-4) and lies on the circle. Draw the perpendiculars from point B to the x-axis and y-axis. Denote the points of intersection with x-axis A and with y-axis C. Consider the right triangle ABO (O is the origin), by tha conditions data: AB=4 and AO=3, then by Pythagorean theorem:
</span>
<span>

.
</span>
{Note, that BO is a radius of circle and it wasn't necessarily to use Pythagorean theorem to find BO}
<span>The sine of the angle BOA is</span>

Since point B is placed in the IV quadrant, the sine of the angle that is <span> drawn in a standard position with its terminal ray will be </span>
<span /><span>
</span><span>
</span>

.
Answer:
x = -1
Step-by-step explanation:
2(x – 2) + 6 = 0
~Distribute left side
2x - 4 + 6 = 0
~Combine like terms
2x + 2 = 0
~Subtract 2 to both sides
2x = -2
~Divide 2 to both sides
x = -1
Best of Luck!
Answer:
Yes, Sally has enough money to buy 28 cans of soda.
Step-by-step explanation:
Yes, because £10 = 1000p
1000p / 28p = 35 cans
35 cans < 28 cans
So Sally has enough money for 28 cans.
The answer would look something like this:

There could also have a simplified version.
I hope this helps.
Rewrite the boundary lines <em>y</em> = -1 - <em>x</em> and <em>y</em> = <em>x</em> - 1 as functions of <em>y </em>:
<em>y</em> = -1 - <em>x</em> ==> <em>x</em> = -1 - <em>y</em>
<em>y</em> = <em>x</em> - 1 ==> <em>x</em> = 1 + <em>y</em>
So if we let <em>x</em> range between these two lines, we need to let <em>y</em> vary between the point where these lines intersect, and the line <em>y</em> = 1.
This means the area is given by the integral,

The integral with respect to <em>x</em> is trivial:

For the remaining integral, integrate term-by-term to get

Alternatively, the triangle can be said to have a base of length 4 (the distance from (-2, 1) to (2, 1)) and a height of length 2 (the distance from the line <em>y</em> = 1 and (0, -1)), so its area is 1/2*4*2 = 4.